tclpysh User Guide

Version 2025.06

DashThru

tclpysh User Guide Version 2025.06

Copyright Notice

Copyright © 2024-2025 DashThru Technology, Ltd. All Rights Reserved.

DashThru is the trademark of DashThru Technology, Ltd. All content, features, and
functionality of the tclpysh product, including but not limited to text, graphics, logos,
images, software, and any other materials, are protected by copyright, trademark, and
other intellectual property laws.

You may not reproduce, distribute, modify, transmit, display, perform, or otherwise use
any content or materials from DashThru or tclpysh without the express written consent
of DashThru Technology, except as permitted by applicable law. Unauthorized use of
any content or trademarks may result in legal action.

DashThru Technology reserves the right to modify, update, or discontinue any part of

tclpysh at any time without prior notice.

Trademarks
DashThru is a registered trademark or trademark of DashThru Technology, Ltd. in the
United States and other countries. Other product and company names mentioned

herein may be trademarks of their respective owners.

Disclaimer
DashThru Technology makes no representations or warranties about the accuracy,
reliability, completeness, or timeliness of the content provided by tclpysh. All content

is provided "as is" without any express or implied warranties.

tclpysh User Guide Version 2025.06

Contents

1 telpysh INtroduction ... e 4

1-1 tclpysh Feature OVErvIiEWcovvviiiriiiiiiii i e iveeeee. 4

1-2 tclpysh Version Compatibilityo.oooiiiiiiiii e 5
1-3 tclpysh Installation and Deployment ..o 5
2 HowtoUsetclpysh e 7

2-1 Launching with Direct Executionccceiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeee.. 8
2-2 Launchingasa ScriptInterpretercovieiiiiii i 10

2-3 Importing into Third-Party Toolsc.ccviiiiiiiiiiiiiiiiiiee i eieeeen 11

tclpysh User Guide Version 2025.06

1 tclpysh Introduction

tclpysh is a standalone hybrid Tcl+Python interpreter developed by DashThru
Technology, based on the DashThru FusionShell interpreter core. It supports Tcl mode,
Python mode, and a Tcl+Python hybrid mode. This design preserves the traditional
scripting style of Tcl while providing users with the flexibility of an open Python
platform.

Traditional Tclinterpreters such as tclsh have become insufficient for modern scripting
needs. In contrast, tclpysh remains compatible with tclsh while offering enhanced
functionality such as native Python support.

For detailed information about the DashThru FusionShell interpreter core, please refer
to the FusionShell User Guide.

1-1 tclpysh Feature Overview

tclpysh provides the following three usage modes. For detailed descriptions, please
refer to Chapter 2: How to Use tclpysh.

e Launching with Direct Execution - Start an interactive command-line session or
execute a script using the tclpysh executable.

e Launching as a Script Interpreter - Specify the tclpysh interpreter in the script
header using a #! shebang.

e Importing into Third-Party Tools - Import tclpysh into third-party tools with a
Python mode.

tclpysh User Guide Version 2025.06

1-2 tclpysh Version Compatibility

The tclpysh interpreter is compatible with different versions of Python. Users should
select the appropriate version based on the requirements of their Python scripts. When
importing into third-party tools, please ensure that the Python version embedded in
the tool matches that of tclpysh.

Currently, tclpysh supports Python 3.6 and above. The supported Python version can
be identified from the name of the installation package. For example, the following

package name indicates support for Python 3.9:

tclpysh_py39_v2025.06-Alpha.tar.xz

1-3 tclpysh Installation and Deployment

e Recommended Operating Systems: RHEL/CentOS 6.5-7.9
Experimental Support: RHEL/Rocky/Alma 8.x
You can check the OS version in RHEL or CentOS by inspecting the system-release file:
% cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

e Installing tclpysh
Simply extract the compressed package to your desired installation path:
% tar xJvf tclpysh_py39_v2025.06-Alpha.tar.xz

e Setting System Environment Variables

You can add environment variable settings to your shell initialization file (e.g., .cshrc).
In the example below, replace <installation_path> with the actual path where you
installed tclpysh. Once set, the tclpysh executable can be used directly from the
command line.

The environment variable DASHTHRU_LTICENSE_SERVER is used to configure the license
service. Forinstructions on obtaining and starting the license service, please refer to the
DashLM User Guide.

<port> refers to the license server port (default is 28000), and <hostname> is the
machine name or IP address hosting the DashLM license service.

tclpysh User Guide Version 2025.06

% setenv DASHTHRU_LICENSE_SERVER
<port>@<hostname>:<port>@<hostname>:..

% set path = ($path <installation_path>/tclpysh_py39_v2025.06/bin)

Example using csh:
% setenv DASHTHRU_LICENSE_SERVER 28000@lic_serverl:28000@lic_server?
% set path = (Spath /edatool/tclpysh_py39_v2025.06/bin)

e Launching tclpysh

% which tclpysh
/edatool/tclpysh_py39_v2025.06/bin/tclpysh
% tclpysh

tcl>

tclpysh User Guide Version 2025.06

2 How to Use tclpysh

To accommodate different user scenarios and script deployment needs, tclpysh
provides three flexible modes of usage: Direct Execution, Script Interpreter, and Third-
Party Integration.

The Direct Execution mode is ideal for interactive debugging and routine manual
execution. It functions similarly to the traditional tclsh and allows users to quickly enter
the development environment.

By adding a shebang (#!) with the tclpysh path at the top of a script, the Script
Interpreter mode allows the script to be run independently. This is useful for integrating
scripts into automated flows.

The Import Mode supports embedding tclpysh into third-party tools with a Python
mode. This provides users with the flexibility to integrate hybrid Tcl/Python scripting
directly into external applications.

With these three usage modes, users can choose the most appropriate method based
on their specific application requirements. This chapter provides detailed explanations

of the following:

e Launching with Direct Execution

e Launching as a Script Interpreter

e Importing into Third-Party Tools

tclpysh User Guide

2-1 Launching with Direct Execution

Version 2025.06

e Launching the Interactive Command Line

You can launch the interactive shell by directly executing the tc1pysh binary located in

the installation directory. A full example is shown below:

% tclpysh
tcl> set a 0

0

tcl> pymode
py> a

I@I

py> b='1'

py> tclmode ()
tcl> return $a
0

tcl> return $b
1

tcl> exit

Info: thank you for using FusionShell! (err:0,

CPU-Shell : 0.25 second(s) Mem-Shell-Res:
CPU-Core : 0.0 second(s) Mem-Core-Res
wWall 127.98 second(s) Mem-Core-Virt:

e Launching with a Script File

crit:0, warn:0, info:1)
18MB

: 2MB

13MB

You can also use tclpysh to execute a script file directly by providing the script as an

argument. A full example is provided below:

set a 0
pymode
print(f'python: a = {a}")
b="'1"
tclmode ()

puts "tcl: a =
puts "tcl: b

$a||
$b||

exit

mix_tcl_py.scr

tclpysh User Guide Version 2025.06

% tclpysh mix_tcl_py.scr

python: a = 0

tcl: a 0

tcl: b 1

Info: thank you for using FusionShell! (err:0, crit:0, warn:0,
info:1)

CPU-Shell : 0.21 second(s) Mem-Shell-Res: 18MB

CPU-Core : 0.0 second(s) Mem-Core-Res : 2MB

wall : 0.01 second(s) Mem-Core-Virt: 13MB

tclpysh User Guide Version 2025.06

2-2 Launching as a Script Interpreter

When executing a script file directly, you can specify tclpysh as the script interpreter by
adding a #! shebang line at the top of the file. Replace <installation_path> with the
actual path to the tc1lpysh binary in the shebang example below. This allows the script

to be executed independently.

#!<installation_path>/tclpysh_py39_v2025.06/bin/tclpysh

Afull example is provided below:

set a 0
pymode
print(f'python: a = {a}")
b="'1"
tclmode ()
puts "tcl: a

$al|
puts "tcl: b = $b"

exit

| 1 .
#!/edatool/tclpysh_py39_v2025.06/bin/tclpysh mix_tcl_py.scr

% mix_tcl_py.scr

python: a = 0

tcl: a 0

tcl: b 1

Info: thank you for using FusionShell! (err:0, crit:0, warn:0,
info:1)

CPU-Shell : 0.21 second(s) Mem-Shell-Res: 18MB

CPU-Core : 0.0 second(s) Mem-Core-Res : 2MB

Wall : 0.01 second(s) Mem-Core-Virt: 13MB

10

tclpysh User Guide Version 2025.06

2-3 Importing into Third-Party Tools

tclpysh can also be imported into third-party tools that support Python mode. Before
importing, you need to enter the Python environment of the third-party tool and use
sys.version to confirm that its Python version matches the version of tclpysh. An
import example is shown below. Please replace <installation_path> with your
actual installation path:

third_party_py> import sys

third_party_py> sys.version

Python 3.6.8 (default, Oct 13 2020, 16:18:22)

[GCC 4.8.5 20150623 (Red Hat 4.8.5-44)]

third_party_py> sys.path = [
'"<installation_path>/tclpysh_py36_v2025.06/1ib"'] + sys.path
third_party_py> import tclpysh

A full example of importing and using tclpysh in the third-party tool:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> import tclpysh

tcl> set a 0

0

tcl> pymode
py> a

o

py> b="1"

py> tclmode()
tcl> return Sa
0]

tcl> return Sb
1

tcl> exit

Info: thank you for using FusionShell! (err:0, crit:0, warn:0, info:1)

CPU-Shell : 0.25 second(s) Mem-Shell-Res: 18MB
CPU-Core : 0.0 second(s) Mem-Core-Res : 2MB
Wall 1 127.98 second(s) Mem-Core-Virt: 13MB

11

tclpysh User Guide Version 2025.06

e Exiting tclpysh

Please note that using exi t in tclpysh will terminate the entire process. To exit only the
tclpysh shell and return to the third-party Python environment, use Tcl's quit
command or Python's quit () function:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> import tclpysh

tcl> quit

third_party_py>

e Manually Launching the tclpysh Shell

By default, importing tclpysh automatically starts the command-line interface. To
prevent this, set the _autorun variable to False before import. After importing, you
can manually launch the shell using tclpysh.run() as needed:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> _autorun = False

third_party_py> import tclpysh

third_party_py>

third_party_py> tclpysh.run()

tcl>

e Manually Closing tclpysh
Normally, exiting the host application will close tclpysh. If that does not happen, you
can manually call tclpysh.close().Asuccess message confirms the shutdown:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> import tclpysh

tcl> quit

third_party_py> tclpysh.close()

Info: thank you for using FusionShell! (err:0, crit:0, warn:0, info:1)

CPU-Shell : 0.25 second(s) Mem-Shell-Res: 18MB
CPU-Core : 0.0 second(s) Mem-Core-Res : 2MB
Wall : 127.98 second(s) Mem-Core-Virt: 13MB

third_party_py>

12

tclpysh User Guide Version 2025.06

e Customizing the Prompt Prefix

By default, after importing tclpysh into a third-party tool, the command-line prompts
for Tcl and Python modes are tc1> and py>, respectively. If you wish to add a prefix to
these prompts, you can set the _prompt variable before importing tclpysh.

For example, if you set _prompt to 'your_platform', the command prompts will
appear as your_platform-tcl> and your_platform-py>:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> _prompt = 'your_platform'

third_party_py> import tclpysh

your_platform-tcl> pymode

your_platform-py>

e Disabling Variable Sharing

By default, tclpysh follows the FusionShell feature of shared variable scope across Tcl
mode, Python mode, and the Python environment of the third-party tool. As shown in
the example below, a variable abc setin Tcl mode is accessible in both tclpysh's Python
mode and the host Python environment:

third_party_py> import sys

third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

third_party_py> import tclpysh

tcl> set abc 123

123

tcl> pymode

py> abc

'123"

py> quit()
third_party_py> abc
'123"

If you want to disable variable sharing between tclpysh and the third-party tool, and
ensure environment isolation, you can define a _globals variable before importing.
This variable must be a dict object.

After this setting, any variables created within tclpysh will be stored in _globals and
will no longer be directly accessible in the third-party tool's global namespace. You can

13

tclpysh User Guide Version 2025.06

access them only via _globals['var_name'] asshown in the following example:

third_party_py> import sys
third_party_py> sys.path = ['/edatool/tclpysh_py36_v2025.06/1ib'] +
sys.path

{}
third_party_py> import tclpysh
tcl> set abc 123

123

tcl> quit

third_party_py> _globals

third_party_py> _globals['abc']

'123"

third_party_py> abc

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'abc' is not defined

14

	Copyright Notice
	Contents
	1 tclpysh Introduction
	1-1 tclpysh Feature Overview
	1-2 tclpysh Version Compatibility
	1-3 tclpysh Installation and Deployment

	2 How to Use tclpysh
	2-1 Launching with Direct Execution
	2-2 Launching as a Script Interpreter
	2-3 Importing into Third-Party Tools

