TclOK User Guide

Version 2025.06

DashThru

TclOK User Guide Version 2025.06

Copyright Notice

Copyright © 2024-2025 DashThru Technology, Ltd. All Rights Reserved.

DashThru is the trademark of DashThru Technology, Ltd. All content, features, and
functionality of the TclOK product, including but not limited to text, graphics, logos,
images, software, and any other materials, are protected by copyright, trademark, and
other intellectual property laws.

You may not reproduce, distribute, modify, transmit, display, perform, or otherwise use
any content or materials from DashThru or TclOK without the express written consent
of DashThru Technology, except as permitted by applicable law. Unauthorized use of
any content or trademarks may result in legal action.

DashThru Technology reserves the right to modify, update, or discontinue any part of

TclOK at any time without prior notice.

Trademarks
DashThru is a registered trademark or trademark of DashThru Technology, Ltd. in the
United States and other countries. Other product and company names mentioned

herein may be trademarks of their respective owners.

Disclaimer
DashThru Technology makes no representations or warranties about the accuracy,
reliability, completeness, or timeliness of the content provided by TclOK. All content is

provided "as is" without any express or implied warranties.

TclOK User Guide Version 2025.06

Contents

1 TclOKINtroduCtion ... et e ee e ae 4
1-1 TclOK Feature OVErVIEWuuiuieietieit i ettt ee e 5
1-2 TclOK Installation and Deploymentcooiiiiiiiiiiiiiiiiiiieeiiieeeee. 5

2 TclOKCheck Mechanism ... e 7
2-1 Overview of TclOK Check Processcccovevviiviiviiiiiiiiiiiicieee. 8

2-2 Handling Unknown Commandscoevivviiiiiiiiiiiiieeiieinieeeiieeeennn. 11

2-3 User-Defined COomMmMandsoueiuiiirioneeee e 13
3 TClOKFEATUIES . .eeiiiieie ittt et e e et e e e eeeeees 17
3-1 Default Check Mode ... 18
3-2 Verbose Check Mode ...t e 20
3-3 StrictCheck Mode ..o e 23
3-4 Initialization Script Execution at Startup oo.eeiiiiiiiiiie 25

3-5 PrintVariable Values at Specific Line Numbersccceeeviiiiiinnn.. 28
3-6 UPF Check Mode Controlc.eouiiiiiiiiiiiiiiiicieieeiceicieee e 30
3-7 Behavior of Unknown Commands in Conditional and Loop Statements ... 32
3-8 Automatically Running Third-Party Programs After Successful Validation...36
4 Tcl Script Error EXamples ...eonie e e e aaas 40

Appendix A: TCIOK Options LiSt eeeininiiieii e e ee e eee e es 41

TclOK User Guide Version 2025.06

1 TclOK Introduction

TclOK is a Tcl script check tool developed by DashThru Technology, featuring a novel
"static + dynamic" checking approach. It helps users quickly scan for basic syntax errors
and other logical errors that may cause script execution to terminate, before running
the Tcl script.

As a simple and flexible interpreted language, Tcl is widely used in various chip design
EDA (Electronic Design Automation) tools. Due to the lack of a compilation process,
errors in Tcl scripts are only discovered during the execution of the script within the EDA
tool. In practical chip design projects, Tcl scripts can contain thousands of lines of code
and may be nested in multiple hierarchies, making it difficult to detect hidden syntax
errors. When these Tcl scripts are used to perform tasks such as chip synthesis or place
and route, errors in the Tcl code often cause the EDA tool to run for an extended period
before unexpectedly terminating.

Traditional Tcl checking tools rely solely on static analysis, such as checking for spelling
mistakes or missing semicolons and parentheses, which can only identify basic syntax
errors. These tools are ineffective in detecting advanced logical errors. Therefore,
debugging Tcl scripts is challenging for engineers, who often need to repeatedly
execute the scripts in the EDA tool for iterative debugging, consuming valuable project
development time.

TclOK uses a "static + dynamic" checking method. By virtually executing the Tcl script,
it can detect most errors within seconds and provide clear descriptions and locations
of the issues, allowing users to quickly resolve Tcl script problems.

TclOK User Guide Version 2025.06

1-1 TclOK Feature Overview

To understand the specific functionality of TclOK for Tcl script check, please refer to
Section 3: TclOK Features. TclOK has the following features:

e Static Check: Performs structural validation of Tcl commands, including basic
syntax, argument types, and quantity checks.

e Dynamic Check: Uses virtual execution mechanism to handle EDA-tool specific
commands which is unknown for TclOK.

e Checking Modes: Offers both default and verbose checking modes.

e Initialization Script: Allows specification of TclOK initialization scripts at startup,
supporting both Tcl and Python formats.

e Support for Auto Run: Supports automatic execution of third-party programs,
such as EDA tools, upon successful validation.

1-2 TclOK Installation and Deployment

e Recommended Operating System Versions: RHEL/CentOS 6.5-7.9
Experimental support for RHEL/Rocky/Alma 8.x
To check the system version on RHEL and CentOS systems, view the system-release
file
% cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

e Installing TclOK

The DashRTL package includes TclOK. Simply extract the compressed package to the
installation directory.

% tar xJvf DashRTL_v2024.12.tar.xz

e Setting System Variables

System variables can be added to the shell initialization file (e.g., .cshrc). In the
following example, replace <installation_path> with the actual installation path.
After setting this, you can directly use the tclok executable from the command line.

DASHTHRU_LICENSE_SERVER: Set this for the license server. Please refer to the DashLM
User Guide for details on how to obtain a license and start the license service. <port>
is the license service port, with a default of 28000. <hostname> refers to the machine
name or IP address where the DashLM license service is running.

TclOK User Guide Version 2025.06

% setenv DASHTHRU_LICENSE_SERVER <port>@<hostname>:..
5 set path = ($path <installation_path>/DashRTL_v2024.12/bin)

N

O

The example for csh is as follows:
% setenv DASHTHRU_LICENSE_SERVER 28000@Llic_serverl:28000@Llic_server2
% set path = (Spath /edatool/DashRTL_v2024.12/bin)

Starting TclOK

% which tclok

/edatool/DashRTL_v2024.12/bin/tclok

% tclok test.tcl -v

TclOK(TM) Script Checker

Copyright(c) 2024, DashThru Technology, Ltd. All rights reserved.

Version: v2024.12-Alpha, build 2024/12/20
Date: 2024/12/25 23:02:22

Host: EPYC / 64 Threads

Launch: tclok test.tcl -v

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Lint'. (LIC-CO)

*kkkkkkkrxkxkkkkkkxkx [CL CHECK SUMMARY ****x*x*x*x*xkkkkkkkkx*x%

Total errors 0

Total unknown commands 0

Possible unknown commands : 0

Hierarchical summary : test.tcl (errors:0, unknown_cmds:0)
oK

TclOK User Guide Version 2025.06

2 TclOK Check Mechanism

TclOK employs an innovative "static + dynamic" checking approach.

In terms of static checking, TclOK performs formal checks on commands, including
basic syntax validation such as spelling, matching parentheses and quotation marks,
variable assignment and references, and command argument types.

For dynamic checking, to ensure high-speed checking efficiency, TclOK virtually
executes commands. This allows TclOK to check the validity of a command without
actually executing it, and to propagate the command's return value. TclOK also
introduces a new concept of returning an "unknown" value: when an unknown
command is virtually executed, its return value is set to "unknown" and is propagated
through the entire script.

This chapter will provide a detailed overview of TclOK's checking principles, covering
the following topics:

e Overview of TclOK Check Process

e Handling Unknown Commands

e User-Defined Commands

TclOK User Guide Version 2025.06

2-1 Overview of TclOK Check Process

The TclOK checking process consists of two steps: formal command validation and
virtual command execution.

Formal Validation focuses on analyzing basic syntax, such as checking for spelling
errors, matching parentheses and quotation marks, variable assignment and
references, and command argument types.

Virtual Execution handles three possible scenarios: normal execution, normal skipping
and unknown command handling.

e Formal Command Validation

Bracket and Quotation Matching: This check ensures that all parentheses and
quotation marks are properly matched. For example, the following command has a
missing quote and bracket:

puts "haha

puts {haha

Incorrect Variable References: This check identifies references to non-existent
variables. In the following example, the variable b does not exist:

set a 0O

puts Sb

Command Argument Count: TclOK verifies the correct number of arguments for
commands. For instance, the 1length command is incorrectly used with two
arguments:

llength {a b c} {a b}

Command Argument Value Validity: This check validates the correctness of command
argument values. For example, the second argument haha in the following command
is not a valid channel:

puts haha haha

Command Argument Type: TclOK checks the argument types for commands to ensure
they match the expected types. In the following example, the second argument should
be aninteger:

lindex {a b c} a

TclOK User Guide Version 2025.06

e Virtual Command Execution

The virtual execution of commands in TclOK is divided into three scenarios: Normal
Execution, Normal Skipping, and Unknown Command Handling.

Normal Execution: This includes the execution of native Tcl commands, user-defined
proc commands, as well as SDC and UPF commands. These commands are executed as
intended by the Tcl interpreter.

Normal Skipping: Commands that involve disk write operations or those executed via
the exec command (which runs external processes) are skipped during virtual execution.
These commands are not executed, but TclOK will handle them by bypassing their
execution without triggering an error.

Unknown Command Handling: If a command is unknown, it is not treated as an error
like in the standard Tcl Shell. Instead, TclOK assigns an "unknown" return value to the
command, which is then propagated. This is a unique handling mechanism of TclOK.
For more details, please refer to Section 2-2: Handling Unknown Commands.

e Virtual Execution of Tcl Commands and Handling of External Commands

Virtual Execution of Native Tcl Commands:

Native Tcl commands, such as 1ist, are virtually executed and return valid values as
expected. For example, in the following code, the arguments for the list command on
lines 2 and 3 return valid results:

set var [lindex {a b c} 1]

list Svar

list [lindex {a b c} 1]

Virtual Execution of User-Defined Procs:

User-defined proc commands also return valid values during virtual execution. For
example, the user-defined p procedure below returns a value as expected, allowing the
arguments on lines 3 and 4 to produce valid results:

proc p {} {return [lindex {a b c} 1]}

set var [p]

list Svar

list [p]

Skipping Commands Involving Disk Operations or External Exec Commands:
Commands that involve disk write operations (e.g., file deletion) or external exec

9

TclOK User Guide Version 2025.06

commands are skipped during virtual execution. In the example below, the three
commands are not executed:

file delete test.tcl

exec rm test.tcl

exec python3 ext.py

If a user needs to execute external exec commands as an exception, the

-enable_ext_exec option can be used. For detailed usage, please refer to Appendix A:
TclOK Options List.

10

TclOK User Guide Version 2025.06

2-2 Handling Unknown Commands

e Identification of Unknown Commands

In addition to native Tcl commands and user-defined proc commands, TclOK also
includes built-in checks for SDC and UPF commands. Any other commands are
identified as unknown.

It is common for Tcl scripts, particularly in the context of EDA tools, to contain a large
number of unknown commands, which are typically proprietary commands specific to
the EDA tools. These commands are not errors in the Tcl script because they are
designed to work within the EDA tools. TclOK aggregates information about these
unknown commands and prints them out, allowing users to review and manage them.

Unknown commands recognized by TclOK are displayed in the summary report (when
using the -verbose flag). In the example below, the test. tcl script file contains two
types of unknown commands: unknown commands and possible unknown
commands, which are listed separately in the summary.

Many EDA tools Tcl shells allow direct invocation of Linux commands, such as the
common s, rm, which, hostname, etc. However, in some EDA tools, these commands
are treated as built-in commands, making it difficult to determine whether they are
unknown commands. Therefore, they are classified as possible unknown commands.
Other true unknown commands are classified as unknown commands.

set var [set_module_top top]
test.tcl
set_parameter -top true

set hn [hostname]

hostname

% tclok test.tcl -verbose

*kkkkkkkrxkxkkkkkkkxkx TCL CHECK SUMMARY ****x*x*x*x*xkkkkkkk*x*x%x

Total errors : 0

Total unknown commands : 2 ->'set_module_top', 'set_parameter'
Possible unknown commands : 1 ->'hostname'

Hierarchical summary : test.tcl (errors:0, unknown_cmds:2
->'set_module_top', 'set_parameter')

11

TclOK User Guide Version 2025.06

e Virtual Execution of Unknown Commands

Once unknown commands are recognized, they cannot be executed normally. TclOK
virtually executes them and returns an "unknown" value. In the following example, an
unknown command unknown_cmd is executed, and its return valueis "unknown," which
causes the 1ist command to also receive an "unknown" value as an argument:

set var [unknown_cmd {a b c}]

list Svar

list [unknown_cmd {a b c}]

The "unknown" value returned from the virtual execution of unknown commands
propagates through the command arguments. In the example below, the "unknown"
value returned by the unknown_cmd command is passed to the lindex command’ s
argument, causing the return value of 1index to also be "unknown," and the final list
command will also receive "unknown" as its argument:

set var [lindex [unknown_cmd {a b c}] 1]

list Svar

list [lindex [unknown_cmd {a b c}] 1]

If TclOK is used with the default settings without handling unknown commands, the
"unknown" values propagated from the virtual execution of unknown commands may
degrade the validity of the entire Tcl script check. This is similar to the propagation of
"X-state" in digital chip simulations, which could lead to unreliable simulation results
for the entire design.

Therefore, we recommend that users register these unknown commands as known
commands in the initialization file. This not only eliminates the propagation of
"unknown" values but also allows for detailed format checks on the command options.
For information on how to define user-customized commands, please refer to Section
2-3: User-Defined Commandes.

12

TclOK User Guide Version 2025.06

2-3 User-Defined Commands

User Tcl scripts often contain a large number of unknown commands, typically specific
to EDA tools. As mentioned in Section 2-2, when TclOK virtually executes an unknown
command, it may propagate the "unknown" return value extensively, which can reduce
the overall effectiveness of the Tcl script check.

Itis recommended that users register these unknown commands as known commands
in the initialization file. The benefits of user-defined commands are as follows:

1. By setting the return value of the command in the proc definition to a fixed value
that mimics the behavior of the EDA tool, the propagation of "unknown" values is
prevented, which improves the accuracy of Tcl script checking.

2. EDAtool commands typically have a large number of options. These can be formally
defined within the proc, allowing for detailed formatting of the command and
enabling the formal checking of argument types.

e Example of Customizing Commands Using Tcl Initialization Script

To define custom commands using a Tcl initialization script, the commands
parse_proc_args and define_proc_constraints are required. For detailed usage,
please refer to Section 2-3: Tcl Language Extensions: Proc Command Extensions in
the FusionShell User Guide.

In the example below, the script to be checked, test.tcl, contains two unknown
commands: set_parameter and hostname. We can prepare an initialization script,
init.tcl, to register these commands as known commands.

In the initialization script, we define the set_parameter command and use the
define_proc_constraints command to define the format of its options, such as the
option name, type, default value, and whether it is optional. We then use the
parse_proc_args command to pass the corresponding option values to the variables
associated with each option. Finally, we output the return value of the set_parameter
command, $cellname. As a result, in the first line of the command in test.tcl, the
set_parameter command will not return an "unknown" value, preventing the
propagation of "unknown" values to the result variable.

13

TclOK User Guide Version 2025.06

Additionally, we define the hostname command, which returns a fixed value,
machine@01. As a result, the summary in the check report will show that the number of
"unknown commands" is zero.

set result [set_parameter -cellname top -value 123] test tcl

set_parameter -iscell true
set hn [hostname]

proc set_parameter {args} {

parse_proc_args -to_vars
return Scellname

define_proc_constraints set_parameter \
-switch_arg "name=cellname type=string optional=true default="'\
-switch_arg "name=value type=int default=1" \
-switch_arg "names=iscell type=bool"

proc hostname {} {
return machine001

% tclok test.tcl -init init.tcl -verbose

*khkkhkkkhkkkihkkkixkkkixkkx TCL CHECK SUMMARY **x*k*x*xkk*xkkkkkkxkk*x%k

Total errors : 0
Total unknown commands 10
Possible unknown commands : 0
Hierarchical summary : test.tcl (errors:0, unknown_cmds:0)

14

TclOK User Guide Version 2025.06

e Example of Command Argument Type Checking Using Tcl Initialization Script

If we use the same initialization file, init. tcl, to define the user's commands, we can
specify argument types for the set_parameter command. For instance, we define that
the -cellname option only accepts data of type string, the ~value option only accepts
int type data, and the —iscell option only accepts boolean type data.

In the following Tcl script to be checked, the set_parameter command incorrectly
specifies the data types for the -value and -iscell options. The TclOK check report
clearly highlights these two errors: 1.2 is not an integer type, and top is not a boolean

type.

set result [set_parameter -cellname top -value 1.2] test.tcl

set_parameter -iscell top
set hn [hostname]

% tclok test.tcl -init init.tcl -verbose

checking: set_parameter -cellname top -value 1.2

Error: wrong # args: expect integer value for '-value' of procedure
'set_parameter' but get '1.2'

Line: 1

File: test.tcl

checking: set_parameter -iscell top

Error: wrong # args: expect boolean value for '-iscell' of procedure
'set_parameter' but get 'top'

Line: 1

File: test.tcl

*khkkhkkkhkkkikkkixkkkixkkkx TCL CHECK SUMMARY **x**x*xkkkxkkkxkkkxkk*x%k

Total errors : 0
Total unknown commands : 0
Possible unknown commands : 0
Hierarchical summary : test.tcl (errors:0, unknown_cmds:0)

15

TclOK User Guide Version 2025.06

e Example of Customizing Commands Using Python Initialization Script

TclOK also supports using Python scripts as initialization scripts to define custom
commands. In the example below, we use init. tcl astheinitialization script, but first,
we need to switch to Python mode using the pymode command. After switching to
Python mode, we register the say_one_or_two_words command as a known

command and define its options and argument types.

from tcl import TclProcConstrExt, TclArgConExt, TclArgConStd

tcl._constr.proc_cons['say_one_or_two_words'] = TclProcConstrExt(
'say_one_or_two_words', 'proc info not needed’, [
TclArgConExt('capitalize', multi=False, type_con=bool),
TclArgConStd('word’, optional=False),
TclArgConStd('word2', optional=True)
1)

tcl._procs['say_one_or_two_words'] = lambda arg_dict: "

set worda [say_one_or_two_words a]
test.tcl
say_one_or_two_wordsab

say_one_or_two_words -capitalize1a b

% tclok test.tcl -init init.tcl -verbose

<info> switch back to tclmode ...

*kkkkkkkkxkkkkkkxkx TCL CHECK SUMMARY ****x*x*x*x*xkk,kkkkkk*x*x%x

Total errors : 0
Total unknown commands : 0
Possible unknown commands : 0
Hierarchical summary : test.tcl (errors:0, unknown_cmds:0)

16

TclOK User Guide Version 2025.06

3 TclOK Features

TclOK checks are divided into Default Check Mode and Verbose Check Mode. The
Default Check Mode only prints essential information such as Tcl errors, making it easy
for users to review. The Verbose Check Mode includes additional information in the
summary, providing users with an overview of the Tcl script.

TclOK supports the execution of initialization scripts before checking the target Tcl
script. These scripts allow users to set necessary environment variables and define
unknown commands. Initialization scripts can be written in either Tcl or Python, and
can be specified via the —init option to provide a script file or via the -x option to
specify script commands.

TclOK also supports automatically running third-party programs (such as EDA tools)
upon successful validation. This feature allows users to check the correctness of the Tcl
script before launching the third-party tool each time.

This chapter provides a detailed overview of TclOK's features, including the following
topics:

e Default Check Mode

e Verbose Check Mode

e Strict Check Mode

e Initialization Script Execution at Startup

e PrintVariable Values at Specific Line Numbers
e UPF Check Mode Control
e Behavior of Unknown Commands in Conditional and Loop Statements

e Automatically Running Third-Party Programs After Successful Validation

17

TclOK User Guide Version 2025.06

3-1 Default Check Mode

When TclOK is used without the -verbose option, it enters Default Check Mode and
uses the -log option to specify the output log file. In Default Check Mode, only the most
basic Tcl check information is printed, such as Tcl errors and "unknown command"
warnings. The usage is as follows:

% tclok test.tcl -log tclcheck.log

In the example for Default Check Mode below, the information printed on the screen
and in the log file differs slightly. The log file includes additional "checking: ..." lines,
which provide information about the commands being checked, while the screen
output only shows concise error messages for easier user review.

Whether printed on the screen or in the log file, if there are any errors in the Tcl script
check, the result will display FAILED at the end. If no errors are found, 0K will be
displayed at the end.

seta0 test.tcl

puts $b
set result [set_parameter -cellname top -value 1.2]
set_parameter -iscell top

% tclok test.tcl -log tclcheck.log

checking: seta 0

Error: can't read "b": no such variable
Line: 2
File: test.tcl

Warning: script contains an unknown command 'set_parameter' of which
check has been skipped.

FAILED

18

TclOK User Guide Version 2025.06

hecking: seta 0
checking: seta tclcheck.log

Error: can't read "b": no such variable
Line: 2
File: test1.tcl

checking: set_parameter -cellname top -value 1.2

checking: set result ...

checking: set_parameter -iscell top

Warning: script contains an unknown command 'set_parameter' of which
check has been skipped.

FAILED

19

TclOK User Guide Version 2025.06

3-2 Verbose Check Mode

When TclOK is used with the -~verbose option, it enters Verbose Check Mode and uses
the -Tlog option to specify the log file for output. Compared to Default Check Mode,
Verbose Check Mode adds additional information about unknown commands and
includes a TCL CHECK SUMMARY section. The usage is as follows:

% tclok test.tcl -log tclcheck.log -verbose

In the example for Verbose Check Mode below, the TCL CHECK SUMMARY information
is described as follows:

Total errors: Displays the total number of Tcl script errors.

Total unknown commands: Shows the number and names of unknown commands.
-- affecting branch: Lists the number and names of unknown commands that
affect conditional statements.

-- affecting loop: Lists the number and names of unknown commands that
affect loop statements.

Possible unknown commands: Shows the number and names of possible unknown
commands.

Hierarchical summary: Provides detailed information about nested script files (those
using source to include other scripts).

This level of detail in Verbose Check Mode provides users with a comprehensive view
of the Tcl script's execution and potential issues.

seta0 test.tcl

puts Sb
set result [set_parameter -cellname top -value 1.2]
set_parameter -iscell top

20

TclOK User Guide Version 2025.06

% tclok test.tcl -log tclcheck.log -verbose

checking: seta 0

Error: can'tread "b": no such variable
Line: 2
File: testl.tcl

<info> line 2: calling unknown command 'set_parameter’, returning result will be
unknown.

checking: set result ...

<info> line 2: #2 argument of command 'set’ is
'UNKNOWN_returned_by_[set_parameter...]', returning result will be unknown
wkxknmixkknik T CHECK SUMMARY ** 4+ ¥ %k snisx kn s

Total errors 1
Total unknown commands : 1->'set_parameter'
Possible unknown commands :0
Hierarchical summary : test.tcl (errors:1, unknown_cmds:1 ->'set_parameter')
FAILED
checking: seta 0 ——
Error: can't read "b": no such variable telcheck.log
Line: 2
File: testl.tcl

checking: set_parameter -cellname top -value 1.2
<info> line 2: calling unknown command 'set_parameter’, returning result will be
unknown.
checking: set result ...
<info>line 2: #2 argument of command 'set' is
'UNKNOWN_returned_by_[set_parameter...]' returning result will be unknown
checking: set_parameter -iscell top
wxmkamxmxkexknk TCL CHECK SUMMARY 4 * %o s kwosssnsnn

Total errors 01

Total unknown commands : 1 ->'set_parameter'

Possible unknown commands : 0

Hierarchical summary : test.tcl (errors:1, unknown_cmds:1

->'set_parameter’)

FAILED

21

TclOK User Guide Version 2025.06

e Log Information in Verbose Check Mode

In Verbose Check Mode, the log output provides more detailed information than the
screen output. Below is an example of the additional content included in the log:

1. checking (at the start of a line): Provides a detailed breakdown of the command
execution within loops, including while, for, and foreach loops. This helps trace
the execution flow and identify potential issues within loop structures.

2. in_proc (at the start of a line): Provides detailed information about the execution
of commands within user-defined proc commands. This allows users to see how
commands inside custom procedures are being processed and whether any issues
arise there.

3. (expr) (at the start of a line): Shows detailed information about the evaluation of
expressions. Thisincludes the evaluation of conditions, logical expressions, and any
other evaluated code, helping users to track the logic flow and diagnose any issues
related to expression evaluations.

checking: seti 0

checking: proc add i {return [incr Si]}
checking: while {Si<2} ...

(expr):{Si<2}

(expr): <internal>return 1

checking: while...add 0
in_proc: while...incr 0
in_proc: while...return 1

checking: while...set str {? 1}

checking: while...puts {? 1}

checking: while...incri

22

TclOK User Guide Version 2025.06

3-3 Strict Check Mode

TclOK performs two types of checks when verifying Tcl scripts: default mode and strict
mode. In default mode, TclOK does not raise an error when it encounters an unknown
command. Instead, it treats the unknown command using a virtual execution
mechanism. For more details, please refer to Section 2-2 Handling Unknown

Commandes.

However, if all third-party tool commands used in the script have been defined and the
user considers any other unknown commands to be invalid, they may want these
commands to be reported as errors. In this case, the user can enable strict mode using
the -strict option. In strict mode, any unknown command encountered will result in
an error, and the final check result will be marked as FAILED. Additionally, the third-
party programs specified by the ~autorun option will not be launched.

......... ——
Correct command name should be get_pins/set_level_shifter

set subin [getpins sub/in]
set_level_shifters -domain pdsub -applies_to inputs -location self sub/in

In the Tcl script top.tcl that is to be checked, there are two commands,
get_pins and set_level_shifter, which are mistakenly written as getpins and
set_level_shifters. Below are the results for both check modes.

e Default Check Mode

In default check mode, no erroris raised. The two incorrect commands are identified as
unknown commands, and the check result is 0K, as shown below:

% tclok top.tcl -verbose

*khkkhkkkhkkkikkkixkkkixkkkx TCL CHECK SUMMARY **x**x*xkkkxkkkxkkkxkk*x%k

Total errors : 0
Total unknown commands : 2 —>'getpins', 'set_level_shifters'
Possible unknown commands : 0
Hierarchical summary :top.tcl (errors:0,
unknown_cmds:2 ->'getpins', 'set_level_shifters')
OK

23

TclOK User Guide Version 2025.06

e Strict Check Mode

When the -strict option is used, the two incorrect commands will not be treated as
unknown commands and will instead trigger an error. The check result is FAILED, as
shown below:

% tclok top.tcl -verbose -strict
Error: invalid command name "getpins"
Line: 3

File: top.tcl

Error: dinvalid command name "set_level_shifters"
Line: 4

File: top.tcl

*kkkkkkkrxkxkkkkkxkxx [CL CHECK SUMMARY ****x*x*x*x*xkkkkkkkx k%

Total errors 2

Total unknown commands 0

Possible unknown commands : 0

Hierarchical summary : top.tcl (errors:2, unknown_cmds:0)
FATILED

24

TclOK User Guide Version 2025.06

3-4 Initialization Script Execution at Startup

TclOK supports the execution of user-specified initialization scripts before checking the
target Tcl script. Common scenarios for executing initialization scripts include:

1. Registering unknown commands as known commands to avoid the impact of
"unknown command" and the propagation of "unknown" return values. See
Section 2-3: User-Defined Commands.

2. Setting up general environment variables, such as tool-specific variables for third-
party EDA tools.

Initialization scripts can be written in either Tcl or Python. The script file can be
specified using the -init option, or individual script commands can be provided using
the -x option.

Usage of Tcl Initialization Script:

% tclok test.tcl -log tclcheck.log -verbose -init init.tcl

% tclok test.tcl -log tclcheck.log -verbose -x "set design top;
set width 16;"

Usage of Python Initialization Script:

Since Tcl variables are always treated as strings, when setting variables in the Python
initialization script, they must also be of string type:

% tclok test.tcl -log tclcheck.log -verbose -init init.tcl

% tclok test.tcl -log tclcheck.log -verbose -x "pymode;

design="top'; width="16";"

These options allow users to initialize their environment or register commands before
the Tcl script check, enabling a smoother and more customized checking process.

25

TclOK User Guide Version 2025.06

e Example of TclOK Executing Initialization Script

In the following example, the Tcl script test.tcl to be checked uses unknown
variables $design and $width, as well as the unknown command set_parameter.
These are defined through the initialization script file init. tcl, which supports both
Tcl and Python script modes.

set version 1.0 test.tcl

puts Swidth
set result [set_parameter -cellname Sdesign -value 1.2]

set_parameter -iscell top

The example of a Tclinitialization script file is as follows:
% tclok test.tcl -log tclcheck.log -verbose -init init.tcl

set design top

set width 16
proc set_parameter {args} {return 1}

The example of a Python initialization script file is as follows:
% tclok test.tcl -log tclcheck.log -verbose -init init.tcl

pymode

design="top'

width="'16"
tcl._constr.proc_cons['set_parameter'] =......
tcl._procs['set_parameter'] = lambda arg_dict: '1'

26

TclOK User Guide Version 2025.06

e Example of TclOK Executing Initialization Script

In the example below, the Tcl script test. tcl to be checked uses unknown variables
$design and swidth, as well as an unknown command set_parameter. The
initialization script is executed directly using the —x option to define these variables and
commands. TclOK supports both Tcl and Python initialization scripts.

set version 1.0 test.tcl
puts Swidth

set result [set_parameter -cellname $design -value 1.2]
set_parameter -iscell top

The example of executing the Tclinitialization script using -x is as follows:
% tclok test.tcl -log tclcheck.log -verbose -x "set design top;
set width 16;"

The example of executing the Python initialization script using -x is as follows:
% tclok test.tcl -log tclcheck.log -verbose -x "pymode;
design="top'; width="16";"

27

TclOK User Guide Version 2025.06

3-5 Print Variable Values at Specific Line Numbers

TclOK supports printing the value of a specified variable at a specific line in the file,
which helps users analyze the execution process and variable state of the script. By
using the -print_var_at_Lline option to specify the line number and variable name,
TclOK will print the value of the variable at that particular line in the script.

1 set FLOW floorplan
2 set DESIGN_TOP sub
3
4 # Design Settings
5 if {SFLOW == "floorplan"}{
6 if {SDESIGN_TOP == "top"}{
7 set result [set_parameter -cellname top -value 1.2]
8 set_parameter -iscell true
9 }
10 }else{
11 set result [set_parameter -cellname top -value 1.2]
12 set_parameter -iscell false
13}

In the above Tcl script example, the user needs to determine whether the 5 f statement
on line 5 of test. tcl was executed. To do this, the user may want to know the values
of certain variables at that point. The following methods can be used to print these
variable values.

If there is only one script file, the file name can be omitted:
% tclok test.tcl -verbose -print_var_at_1line "5 FLOW DESIGN_TOP
RUN_TYPE"

A wildcard (x) can be used to match file names, such as in the following usage, which
prints the variable values from line 5 of files starting with test:
% tclok test.tcl -verbose -print_var_at_line "test*:5 FLOW

DESIGN_TOP RUN_TYPE"

When there are multiple script files (e.g., due to source nesting), it is recommended to

specify the full path of the file:

% tclok test.tcl -verbose -print_var_at_line "test.tcl:5 FLOW
DESIGN_TOP RUN_TYPE"

28

TclOK User Guide Version 2025.06

Using the above methods, TclOK prints the following variable values to the screen and
log:

<hook> 1ine 5: value of S$FLOW is "floorplan"

<hook> line 5: value of $DESIGN_TOP s "sub"

<hook> line 5: variable $RUN_TYPE does not exist

It is important to note that if the specified line does not contain any commands (such
asline 3in the above example), TclOK will search downward for the next line containing
a command to report on, which in this caseis line 5.

If you want to print variable information at multiple line numbers, you can repeat the
-print_var_at_Lline option, as shown below:

% tclok test.tcl -verbose

-print_var_at_line "test.tcl:2 FLOW DESIGN_TOP RUN_TYPE"
-print_var_at_line "test.tcl:5 FLOW DESIGN_TOP RUN_TYPE"

In this case, TclOK will print the variable values for both line 2 and line 5 as follows:
<hook> 1ine 2: value of $FLOW is "floorplan"

<hook> 1line 2: variable SDESIGN_TOP does not exist

variable SRUN_TYPE does not exist

value of SFLOW is "floorplan"

value of SDESIGN_TOP -+is "sub"

variable SRUN_TYPE does not exist

<hook> 1l1ine
<hook> 1line

<hook> T1line

(S2 NG NG B S}

<hook> T1line

29

TclOK User Guide Version 2025.06

3-6 UPF Check Mode Control

TclOK provides two modes for UPF (Unified Power Format) checks:

1. Normal Mode: This mode allows UPF files to contain non-UPF standard commands,
such as get_cells, get_pins, and other Tcl commands that may not strictly
conform to UPF standards.

2. Strict Mode: In this mode, non-UPF standard commands are not allowed. Only UPF-
compliant commands are permitted, ensuring stricter validation and adherence to
UPF specifications.

These two modes give users flexibility in how UPF files are checked, allowing either
more lenient checks or a more stringent, standards-compliant validation process.

test.tcl

.........

set subin [get_pins sub/in]

set_level_shifter -domain pdsub -applies_to inputs -location self Ssubin
set_level_shifter -domain pdsub -applies_to outputs -location parent [get_cells
sub/out]

By default, TclOK uses Normal Mode for UPF checks, which allows non-UPF standard
commands (such as get_cells, get_pins, etc.) in UPF files. In the example of the
top.upf file, no errors will be raised in Normal Mode. However, if you need to use Strict
UPF Mode, the -strict_upf option must be specified.

Strict UPF Mode affects the UPF file check in two ways:

1. Direct Check on .upf Files: This checks the file with the . upf extension directly.

2. Check on Files Specified by load_upf: This checks UPF files specified using the
load_upf command in the Tcl script.

Usage examples for enabling Strict UPF Mode are as follows:

% tclok top.upf -verbose -strict_upf
% tclok test.tcl -verbose -strict_upf

30

TclOK User Guide Version 2025.06

When Strict UPF Mode is enabled, both methods will report the following errors:

Error: command 'get_pins' is not allowed inside UPF file
Line: 30
File: top.upf

Error: can't read "subin": no such variable
Line: 31
File: top.upf

Error: command 'get_cells' is not allowed inside UPF file
Line: 32

File: top.upf

These errors are raised because Strict UPF Mode only allows UPF-compliant commands,
and non-UPF standard commands (like get_cells and get_pins) are flagged as errors.

31

TclOK User Guide Version 2025.06

3-7 Behavior of Unknown Commands in Conditional
and Loop Statements

e Behavior of Unknown Commands in Conditional Statements

When an unknown command appears in the condition expression of an if, for, or
while statement, resulting in an "unknown" value for the expression, the default
behavior of TclOK is to skip the entire i f, for, or whi le statement. This occurs because
TclOK cannot determine which branch of the 1 f statement should be executed, nor can
it determine whether the for/while loop should exit.

The best solution in this case is to register the unknown command as a known
command in theinitializationfile (-init init.tcl)andassignitanactual returnvalue.
This allows TclOK to evaluate the expression and execute the if, for, or while
statement based on the actual result. For detailed instructions on setting this up, refer
to Section 2-3: User-Defined Commands.

If the user does not wish to define custom commands, the behavior of TclOK can be
globally configured using the -conditional_test_unknown_action option. This
option provides three possible settings:

skip: When the expression evaluates to "unknown," the entire if, for, or while
statement is skipped, which is the default behavior of TclOK.

as_true: When the expression evaluates to "unknown," the expression is treated as
true, and the if, for, orwhile statement is executed as if the condition were true.

as_false: When the expression evaluates to "unknown," the expression is treated as
false, and the i f, for, or while statement is executed as if the condition were false.

These options allow users to control how TclOK handles unknown commands in
conditional expressions, providing more flexibility in script validation.

32

TclOK User Guide Version 2025.06

test.tcl
seta0

} elseif {{unknown_cmd_2] == 1}{

setal
}else{
seta?2

1}

while {[unknown_cmd_3] < 10}{
seta0
puts Sa

As shown in the example above, when the condition expressions in if or while
commands contain three unknown commands (unknown_cmd_1, unknown_cmd_2, and
unknown_cmd_3), the expression evaluates to "unknown."

The following tool behaviors occur based on the three different settings for

-conditional_test_unknown_action:

1. Using skip: the tool skips the entire i f or while statement, which is consistent with
the default behavior when —conditional_test_unknown_action is not used.

% tclok test.tcl -verbose -conditional_test_unknown_action skip

2. Using as_true: in this case, the first i f expression is treated as true, so set a 0is
executed. Thewhile expressionis also treated as true, but the loop executes only once
before it terminates.

% tclok test.tcl -verbose -conditional_test_unknown_action as_true

3. Using as_false: in this case, both the first and second i f expressions are treated as
false, so set a 2 isexecuted. The while expression is also treated as false, so the

loop is immediately exited without executing.

% tclok test.tcl -verbose -conditional_test_unknown_action as_false

33

TclOK User Guide Version 2025.06

e Behavior of Unknown Commands in Loop Statements

When an unknown command is executed within a for, foreach, orwhile loop, TclOK's
default behavior is to immediately break out of the loop. This occurs because TclOK
cannot determine whether the unknown command is a real error or an undeclared
built-in command from an EDA tool.

The best solution in this case is to register the unknown command as a known
command in theinitializationfile (-init init.tcl)andassignitanactual returnvalue.
This allows TclOK to evaluate the expression and execute the for, foreach, or while
loop as expected. For detailed instructions on setting this up, refer to Section 2-3: User-

Defined Commands.

If the user does not want to define custom commands, the behavior of TclOK can be
globally configured using the -loop_body_unknown_action option. This option
provides three possible settings:

break: When an unknown command is encountered, the loop immediately exits, which
is the same behavior as the break command.

delay_break: When an unknown command is encountered, TclOK waits until the
current iteration of the loop is completed, and then it breaks out of the loop after

executing all the commands in that iteration.

go_on: When an unknown command is encountered, TclOK ignores the command and
continues to execute the loop until the loop’ s exit condition is met.

These settings allow users to control how TclOK handles unknown commands within
loops, providing flexibility in script validation and execution.

34

TclOK User Guide Version 2025.06

foreachi{0123}{

set_parameter -cellname top -value 1.2
setvar_a Si

for {seti 0} {Si<4}{incri}{
set_parameter -cellname top -value 1.2
setvar_b Si

As shown in the example above, when a for, foreach, or while loop executes the
unknown command set_parameter, the following tool behaviors occur based on the
three different settings for -loop_body_unknown_action:

1. Using break: When the tool encounters the unknown command, it immediately exits
the for/foreach loop. As a result, the commands set var_a and set var_b are not
executed, and after execution, these two variables do not exist. This behavior is the
same as when -loop_body_unknown_action is not used.

% tclok test.tcl -verbose -loop_body_unknown_action break

2. Using delay_break: When the tool encounters the unknown command, it completes
the current iteration of the loop (where $i equals 0) and then exits the loop. After
execution, the values of var_a and var_b will be 0, as the loop runs for $i=0 before
exiting.

% tclok test.tcl -verbose -loop_body_unknown_action delay_break

3. Using go_on: When the tool encounters the unknown command, it continues to
execute the entire for/foreach loop until the loop condition is met. The loop will run
for values of $1 from 0 to 3. After execution, the values of var_a and var_b will both be

3, as the loop executes through all iterations.

% tclok test.tcl -verbose -loop_body_unknown_action go_on

35

TclOK User Guide Version 2025.06

3-8 Automatically Running Third-Party Programs After
Successful Validation

TclOK supports automatically running third-party programs, such as EDA tools, after a
successful script check. This allows users to ensure the correctness of the Tcl script used
by the tool before launching the third-party program.

e Ifthe check passes (i.e., TclOK detects no errors in the Tcl script), it guarantees that
the third-party tool can run the script without issues.

e Ifthe check fails (i.e., TclOK detects errors in the Tcl script), the third-party tool will
not be started, and the user must fix the Tcl script errors before rerunning the check.

To use this feature, the —autorun option must be specified along with the third-party
program to be executed. In the example below, the Tcl check passes without errors, and
then the run_tool -f test.tcl program is automatically executed.

% tclok test.tcl -log tclcheck.log -verbose -autorun run_tool
-f test.tcl

*khkkhkkkhkkkAkkkixkkkixkkx TCL CHECK SUMMARY **x**x*xkk*xkkkxkkkxkk*x%k

Total errors : 0

Total unknown commands : 1 ->'set_parameter'

Possible unknown commands : 1 ->'hostname'

Hierarchical summary : test.tcl (errors:0, unknown_cmds:1

->'set_parameter')

OK, autorun is launching ' run_tool ...'

If there are errors detected during the Tcl check, the run_tool -f test.tcl program
will not be executed. This ensures that the test. tcl script is correct before it is passed
to the third-party tool. As shown in the example below, if any errors are found in
test.tcl, the tool will not run.

% tclok test.tcl -log tclcheck.log -verbose -autorun run_tool
-f test.tcl

Error: can't read "value": no such variable

Line: 1

File: test.tcl

36

TclOK User Guide Version 2025.06

*kkkkkkkkxkkkkkkkxkx [CL CHECK SUMMARY ****x*xkxxkxkkkkkkkkx k%

Total errors 1

Total unknown commands : 1 ->'set_parameter'

Possible unknown commands : 1 ->'hostname'

Hierarchical summary : test.tcl (errors:1, unknown_cmds:1

->'set_parameter')

FAILED

e Notes on the Usage of the -autorun Option

When using the ~autorun option, it is important to note that everything following this
option is treated as part of the third-party program.

Therefore, —autorun must be used as the last TclOK option, meaning other options like
-log and -verbose should be placed before ~autorun.

1. Correct usage of -autorun:
% tclok test.tcl -log tclcheck.log -verbose -autorun run_tool

-f test.tcl

In this example, -log and -verbose options are placed before —~autorun, and the third-
party program run_tool -f test.tcl isexecuted correctly.

2. Incorrect usage of -autorun:
% tclok test.tcl -log tclcheck.log -autorun run_tool -f test.tcl

-verbose
In this example, TclOK incorrectly considers run_tool -f test.tcl -verbose asthe

third-party program to execute, mistakenly treating -verbose as part of the program's
options, rather than a TclOK option.

37

TclOK User Guide Version 2025.06

e Using the -autorun_max_errors Option to Increase the Error Threshold for
Automatic Program Execution

By default, TclOK requires 0 errors for the automatic execution of a third-party program.
If users want to tolerate a certain number of errors and still run the third-party program,
they can specify the error threshold using the ~autorun_max_errors option.

For example, if the user wants to allow the automatic execution of the third-party
program when there are fewer than 3 errors in the Tcl script, they can execute the
following command. As shown, since only 1 error occurred, which is below the set
threshold of 3 errors, the run_tool program will still be automatically executed after
the check completes.

% tclok test.tcl -log tclcheck.log -verbose -autorun_max_errors 3
-autorun run_tool -f test.tcl

Error: can't read "value": no such variable

Line: 1

File: test.tcl

*kkkkkhkkkhkkkixkkkixkkx [TCL CHECK SUMMARY **x**x*xkk*xkkkkkkxkk*x%

Total errors 1

Total unknown commands : 1 ->'set_parameter'

Possible unknown commands : 1 ->'hostname'

Hierarchical summary : test.tcl (errors:1, unknown_cmds:1

->'set_parameter')

FAILED, total error count 'l' <= autorun limit '3', autorun is

launching 'run_tool ...'

This option allows more flexibility by enabling the execution of the third-party program
even if a limited number of errors are present in the script.

38

TclOK User Guide Version 2025.06

e Using the -no_lic_enable_autorun Option to Run Third-Party Programs After
License Checkout Failure

Users often encounter situations where the license checkout fails, such as when they
are unable to connect to the license server or forget to set the system variable
DASHTHRU_LICENSE_SERVER, causing TclOK to fail to start and resulting in a final check
status of FAILED.

By default, since the script was not checked, TclOK will return a FAILED result and will
not automatically run the third-party program specified by the -autorun option.
However, when the -no_lic_enable_autorun option is used, even if the license
checkout fails, the third-party program will still run automatically. The usage is shown
in the example below:

% tclok test.tcl -log tclcheck.log -verbose -no_lic_enable_autorun

-autorun run_tool -f test.tcl

Error: dial tcp 127.0.0.1:28000: connect: connection refused. (LIC-
FAIL-INIT)

Error: license 1is not available, please confirm
'"DASHTHRU_LICENSE_SERVER' env has been set to the correct
'"port@host' which DashlLM is running and serving. (LIC-CHECK-ENV)

FAILED, autorun is launching 'run_tool ...' because

'-no_lic_enable_autorun' s set

Note: This option does not affect the normal behavior of the tool after a successful
license checkout. After using this option, the third-party program will still be launched
automatically based on whether the actual check result of the script is OK or FATLED.

39

TclOK User Guide Version 2025.06

4 Tcl Script Error Examples

Below is an example of a common Tcl script error. By comparing it, you can see how
TclOK can detect most common Tcl script errors, ensuring that any issues are caught
before running in the EDA tool.

seta 123
if Sa {
puts Sa Sa Sa ; #Incorrect usage of Sa inline within puts
}
source bad_filepath.tcl ; # Incorrect file path

Tcl Script Error Detection Comparison

Tcl Script Any EDA Tool TclOK Other Tcl Checkers
Line 2: Missing {} around expr | Pass Pass Issue a warning (Noise)
Line 3: Incorrect variable Error/Stop Error Pass (Error Missed)
inline usage

Line 5: Incorrect file path in Error/Not executed Error Pass (Error Missed)
source

40

TclOK User Guide Version 2025.06

Appendix A: TclOK Options List

s tclok

<tcl_file>
Specifies the target Tcl script file to be checked.

[-autorun | -a] <ext_command> <options> ...
Automatically runs a third-party program when the check passes. All
content following —autorun is treated as part of the external program.
This option must be used as the last option.

[-autorun_max_errors <error_count>]
Specifies the maximum number of errors allowed before
automatically running the third-party program.

[-verbose | -v]
Prints detailed log information during the check.

[-echo | -€]
Prints the script commands while checking.

[-log | -1] <log_file_path>
Specifies the log file path where the check results will be stored.

[-execute | -x] <startup_exec_script>
Specifies an initialization script to be executed. This option can be
used multiple times to execute multiple scripts.

[-init <init_tcl_script_file>]

Specifies the initialization Tcl script file. Multiple script files can be
specified by repeating this option.

41

TclOK User Guide Version 2025.06

[-cd <path>]
Specifies the directory to change into when starting TclOK.

[-lic_timeout <seconds>]
Specifies the license checkout timeout in seconds. Defaults to 2
seconds if not set.

[-no_lic_enable_autorun]
When a license checkout fails and causes the script check to fail, the
third-party program specified by ~autorun will still be executed using
this option.

[-max_errors <error_count>]
Specifies the maximum number of errors allowed during Tcl checking.

[-max_report_unknown_cmds <unknown_cmd_count>]
Specifies the maximum number of unknown commands that can be
reported during the check.

[-conditional_test_unknown_action <skip | as_true | as_false>]
Controls the behavior of if, for, or while conditions when the
expression evaluates to unknown.
skip: Skips the entire statement.
as_true: Treats the expression as true and executes the statement.
as_false: Treats the expression as false and executes the statement.

[-loop_body_unknown_action <break | delay_break | go_on>]
Controls the behavior of loops (for, while, foreach) when
encountering an unknown command inside the loop.
break: Immediately exits the loop when an unknown command is
encountered.
delay_break: Completes the current loop iteration before exiting.
go_on: Continues executing all iterations of the loop even after
encountering an unknown command.

[-strict_upf]
Ensures that no non-UPF commands (such as get_cells or
get_pins) appearin .upf files or files loaded by load_upf.

[-enable_ext_exec "command_patternl command_pattern2 ... "]
Executes external commands during the check process using exec.

42

TclOK User Guide Version 2025.06

[-print_var_at_line "(filepath_pattern:)line var_namel var_name2 ..."]
Prints the values of specified variables at specified line numbers. This
option can be repeated to print variables at multiple locations in the
script.

[-version]
Prints the version number of TclOK.

[-help | -h | --help]

Prints the help information for starting TclOK, including available
options.

43

	Copyright Notice
	Contents
	1 TclOK Introduction
	1-1 TclOK Feature Overview
	1-2 TclOK Installation and Deployment

	2 TclOK Check Mechanism
	2-1 Overview of TclOK Check Process
	2-2 Handling Unknown Commands
	2-3 User-Defined Commands

	3 TclOK Features
	3-1 Default Check Mode
	3-2 Verbose Check Mode
	3-3 Strict Check Mode
	3-4 Initialization Script Execution at Startup
	3-5 Print Variable Values at Specific Line Numbers
	3-6 UPF Check Mode Control
	3-7 Behavior of Unknown Commands in Conditional and Loop Statements
	3-8 Automatically Running Third-Party Programs After Successful Validation

	4 Tcl Script Error Examples
	Appendix A: TclOK Options List

