
 

 

 
 
 
 
 

FusionShell User Guide  
Version 2025.12  

 

 

 

 

 

 
  



FusionShell User Guide  Version 202 5.12  

2 

Copyright Notice 
Copyright © 2024 -2026  DashThru Technology, Ltd. All Rights Reserved. 

DashThru is the trademark of DashThru  Technology, Ltd. All content, features, and 

functionality of the FusionShell product, including but not limited to text, graphics, 

logos, images, software, and any other materials, are protected by copyright, 

trademark, and other intellectual property laws. 

You may not reproduce, distribute, modify, transmit, display, perform, or otherwise use 

any content or materials from DashThru or FusionShell without the express written 

consent of DashThru Technology, except as permitted by applicable law. Unauthorized 

use of any content or trademarks may result in legal action. 

DashThru Technology reserves the right to modify, update, or discontinue any part of 

FusionShell at any time without prior notice. 

 

Trademarks  

DashThru is a registered trademark or trademark of DashThru Technology, Ltd. in the 

United States and other countries. Other product and company names mentioned 

herein may be trademarks of their respective owners. 

 

Disclaimer 

DashThru Technology makes no representations or warranties about the accuracy, 

reliability, completeness, or timeliness of the content provided by FusionShell. All 

content is provided "as is" without any express or implied warranties. 

 

  



FusionShell User Guide  Version 202 5.12  

3 

Contents  
1  FusionShell Overview   …………………… ………………………………………  4  

   1-1  Starting and Exiting FusionShell  ……………………………………………   5 

   1-2  Switching Between Tcl Mode and Python Mode   …………………………   7 

2  FusionShell Tcl Mode   ……………………………………………………………   9  

   2-1 Tcl Language Overview  ………………………………………… ……………  10  

   2-2 Extended Tcl Commands for Object Handling  ……………………………  11 

   2-3 Extended Tcl Commands for Procedure Handling   ………………………  16 

   2-4 Debugging Enhancements   …………………………………………………  24 

   2-5 Filelist Enhancements: flist Files  ……………………………………………  28 

   2-6 Tab Key Enhancements   ……………………… ……………………………  34  

3  FusionShell Python  Mode   ………………………………………………………  38  

   3-1 Python Language Overview   ……………………………………………… … 39 

   3-2 Python Version  ………………… ………………………… …………………  40  

   3-3 Importing Third-Party Python Libraries  …………………… ………………  40  

   3-4 Invoking Built-in Tool Functions and Variables  ……………………………  42  

4  FusionShell Hybrid Mode   ……………… ………………………………………  44  

   4-1 Using Tcl Commands and Variables in Python Mode  ……………………  45  

   4-2 Using Python Functions and Variables in Tcl Mode  ………………………  47 

   4-3 Tcl+Python Hybrid Script Examples  ………………………………………  49 

Appendix A  Common  Tcl Commands   …………………… ………………………   52  

Appendix B   Additional Tool Commands   ……………………… ………… ………  60  

 

  



FusionShell User Guide  Version 202 5.12  

4 

1 
1 FusionShell Overview  
 
FusionShell is a command -line user interface (CLI) developed by DashThru  Technology . 

It serves as the standard interface for users operating DashThru 's EDA products. 

FusionShell supports both Tcl and Python modes, accommodating traditional Tcl 

scripting preferences while simultaneously providing users with a highly open Python 

platform. 
 
Users can switch between FusionShell's Tcl and Python modes freely and in real-time 

using specific commands. Consequently, users can choose a workflow that best suits 

their needs: utilizing exclusively Tcl mode, exclusively Python mode, or a hybrid 

combina tion of both. 
 
In Tcl mode, FusionShell extends and enhances the native Tcl language with multiple 

advanced features to meet the development requirements of different user groups. In 

Python mode, users can work in the same way as in standard Python environments, 

while also leveraging a wide range of third-party Python packages to assist script 

development.  
 
For more information about FusionShell features, please refer to the following sections: 
 
⚫ FusionShell Tcl Mode 
⚫ FusionShell Python Mode  
⚫ FusionShell Hybrid Mode  
 
  



FusionShell User Guide  Version 202 5.12  

5 

1-1 Starting and Exiting FusionShell 
 
 
When launching FusionShell, users can specify whether to enter interactive mode or 

batch mode, and whether to start in Tcl mode or Python mode. In interactive mode, 

commands are entered and executed manually by the user. In batch mode, FusionShell 

automatically executes the specified script file. 
 
 
 

Starting FusionShell in Interactive Mode 
 
 
⚫ Starting Interactive Tcl Mode 
To start interactive Tcl mode, invoke the tool executable without any options. In the 

following examples, <tool_exec_file> represents the executable name of the 

tool, such as dashrtl. 
%  <tool_exec_file> 

 
⚫ Starting Interactive Python  Mode  
To start interactive Python mode, invoke the tool executable with the -pymode 

option. 
%  <tool_exec_file> -pymode 

 
 
 
Starting FusionShell in Batch Mode 
 
 
⚫ Starting Batch  Tcl Mode  
To start batch Tcl mode, invoke the tool executable with the -files option to 

specify the Tcl script file path. 
%  <tool_exec_file> -files user.tcl 

 
⚫ Starting Batch  Python  Mode  
To start batch Python mode, invoke the tool executable with both the -files 

option to specify the Python script file and the -pymode option. 
%  <tool_exec_file> -files user.py -pymode 

 
 



FusionShell User Guide  Version 202 5.12  

6 

 
Exiting FusionShell 
 
 
⚫ Exiting FusionShell in Tcl Mode 
In Tcl mode, use the standard Tcl commands exit or quit to terminate 
tool-tcl> exit 

 
⚫ Exiting FusionShell in Tcl Mode 
In Python mode, use the Python built-in function exit() to terminate FusionShell. 
tool-py> exit() 

 

  



FusionShell User Guide  Version 202 5.12  

7 

1-2 Switching Between Tcl Mode and Python Mode  
 
 
FusionShell allows users to switch seamlessly between Tcl mode and Python mode at 

runtime without exiting the shell. After a mode switch command is issued, the 

command prompt changes accordingly, making it easy to identify the current operating 

mode.  
 
 

Identifying the Current Command -Line Mode  
 
 
FusionShell distinguishes Tcl mode and Python mode by the command -line 

prompt.  A prompt ending with -tcl indicates Tcl mode. A prompt ending with -py 

indicates Python mode. 
 
In the following prompt  examples , tool represents the name of the DashThru 's 

EDA tool, such as dashrtl. 
 
⚫ Tcl Mode Prompt  
tool-tcl> 

 
⚫ Python Mode Prompt  
tool-py> 

 
 
Switching Between Command -Line Modes  
 
 
FusionShell supports dynamic switching between Tcl  mode and Python mode 

without restarting the tool. From Tcl mode, use the pymode command to switch to 

Python mode.  From Python mode, call the tclmode() function to switch back to 

Tcl mode. 
 
The following example demonstrates switching from Tcl mode to Python mode and 

then back to Tcl mode. 
 
After executing pymode, the prompt changes to tool-py, indicating Python mode. 

Similarly, after executing tclmode(), the prompt changes to tool-tcl, indicating 

Tcl mode. 



FusionShell User Guide  Version 202 5.12  

8 

 
tool-tcl> set a 0 

0 

tool-tcl> pymode 

tool-py> a 

'0' 

tool-py> b='1' 

tool-py> tclmode() 

tool-tcl> puts $b 

1 

tool-tcl> puts $a 

0 

 

 

Sharing Variables and Commands Between Modes  
 
 
Variables and commands are shared between Tcl mode and Python mode in 

FusionShell. Variables and commands defined in Tcl mode can be accessed and 

used in Python mode.  Variables and commands defined in Python mode can 

likewise be accessed and used in Tcl mode. 
 
This shared execution environment allows users to switch freely between Tcl and 

Python while continuing to use previously defined variables and commands. 
 
For more details on using shared variables and commands across modes, refer to 

4 FusionShell Hybrid Mode . 
 
 
 

  

TCL  Shell 

Python Shell 

TCL  Shell 



FusionShell User Guide  Version 202 5.12  

9 

2 
2 FusionShell Tcl Mode  
 
FusionShell Tcl mode is developed based on Tcl version 8.5. In addition to supporting 

the standard Tcl language, FusionShell provides multiple functional extensions and 

enhancements tailored for EDA workflows. 
 
For more information about features available in FusionShell Tcl mode, refer to the 

following sections: 
 
⚫ Tcl Language Overview  
⚫ Extended Tcl Commands for Object Handling  
⚫ Extended Tcl Commands for Procedure Handling  
⚫ Debugging Enhancements  
⚫ Filelist Enhancements: flist Files 
⚫ Tab Key Enhancements  
 
  



FusionShell User Guide  Version 202 5.12  

10 

2-1 Tcl Language Overview  
 
 
Tcl, short for Tool Command Language, is an interpreted scripting language created by 

John Ousterhout in 1988. It was originally designed as a glue language to connect 

different software components. Tcl can be used as an interactive shell, a standalone 

script interpreter, or embedded into applications as an extension language. 
 
Tcl supports variables, procedures, and control structures, and provides a powerful 

built-in core command set. These commands can be used to perform a wide range of 

operations, including file manipulation, string processing, and mathematical 

computation.  
 
Tcl uses several special characters to represent specific syntax and language constructs. 

Commonly used special characters include: 
 
$  Used to reference variables in Tcl scripts. 
 
() Used to group expressions, typically in mathematical expressions or command 

evaluation. 
 
[] Used to perform command substitution. Commands enclosed in square brackets 

are evaluated first, and their results are substituted into the surrounding command. 
 
\ Used for escaping characters and performing character substitution within strings. 
 
"" Text enclosed in double quotes is treated as a string, with variable and command 

substitution applied. 
 
{} Text enclosed in braces is treated as a literal string, and no variable or command 

substitution is performed. 
 
* Wildcard character that matches any string, including the empty string. 
 
? Wildcard character that matches any single character. 
 
; Command separator. Used to separate multiple commands on the same line. 
 
#  Comment character. Any line beginning with this character is treated as a comment 

and is not executed.  



FusionShell User Guide  Version 202 5.12  

11 

2-2 Extended Tcl Commands for Object Handling  
 
 
In standard Tcl, data is typically managed using lists. However, Tcl lists are essentially 

string-based lists, which can be inefficient when handling the large volumes of data 

commonly encountered in chip design workflows. 
 
To address these limitations, FusionShell extends Tcl by introducing a set of built-in 

object commands. These commands operate on an internal object -based data model 

specifically designed to represent design data efficiently. Common object types include 

mo dules, cells, pins, ports, and parameters. 
 
Compared with native Tcl lists, the FusionShell object-based data model  provides the 

following advantages: 
 
⚫ Type Awareness  
Tcl lists can only store string data, whereas FusionShell objects represent strongly typed 

design entities, including both primitive types and reference types. 
 
⚫ Richer Functionality 
Tcl lists provide only basic operations such as insertion, deletion, and element access. 

In contrast, built-in object commands support advanced operations such as filtering, 

searching, sorting, and comparison. 
 
⚫ Improved Performance  
Operations on Tcl lists often require full list traversal, which can be inefficient for large 

datasets. FusionShell objects are backed by optimized internal data structures and 

algorithms, enabling more efficient processing of large-scale design data. 
 
For complex design analysis and manipulation tasks, the object-based command s 

provide significantly better performance and flexibility than native Tcl lists. 
 
 

Creating and Storing Object Handles  
 
 
FusionShell operates on objects through object handles, similar to how the open 

command returns a file descriptor. The get_objects command returns a handle 

to the specified objects. Object handles are represented as strings prefixed with 

_obj. 



FusionShell User Guide  Version 202 5.12  

12 

 
In the following example, the get_objects -type cell command creates an 

object handle for all cells matching *reg*. The command prints the names of the 

matched objects and returns an object handle _obj1. 
 
The get_objects -type port command creates a handle for the port named clk, 

returning a new object handle _obj2. 
 
tool-tcl> get_objects -type cell *reg* 

out_reg[0] out_reg[1] out_reg[2] 

_obj1 

tool-tcl> get_objects -type port clk 

clk 

_obj2 

 
In the following example, an object handle can be stored in a variable by assigning 

the return value of get_objects. Printing the variable directly displays the handle 

identifier rather than the object names. To retrieve the object name list, use the 

get_object_name command.  
 
tool-tcl> set reg_cell [get_objects -type cell *reg*] 

_obj1 

tool-tcl> puts $reg_cell 

_obj1 

tool-tcl> get_object_name $reg_cell 

out_reg[0] out_reg[1] out_reg[2] 

 
 
Operating on Object Handles  
 
 
Operations such as adding, removing, and comparing objects are performed using 

FusionShell built-in object commands.  
 
These commands typically follow the naming convention *_objects, such as 

add_to_objects and remove_from_objects. 
 
⚫ add _to_objects 
Adds existing object elements to a new or existing object handle. In the following 

example, add_to_objects creates a new handle containing all elements from 

reg_cell plus data_reg. The resulting handle is stored in the variable all_reg. 



FusionShell User Guide  Version 202 5.12  

13 

tool-tcl> set all_reg [add_to_objects $reg_cell [get_objects -

type cell data_reg]] 

_obj3 

 
⚫ compare _objects 
Compares two object handles. In the following example, if both handles reference 

exactly the same set of objects, the command returns 0; otherwise, it returns 1. 
 
By default, object order is ignored. To perform an order-sensitive comparison, use 

the -order_dependent option. 
 
tool-tcl> compare_objects [get_objects -type port *] $clk_port 

1 

tool-tcl> compare_objects [get_objects -type port *] [get_objects 

-type port *] 

0 

 
⚫ filter_objects 
Filters objects from an existing handle based on a specified filter expression and 

returns a new object handle. In the following example, cells whose names start 

with u are selected. 
 
tool-tcl> filter_objects -print [get_objects -type cell *] "name 

=~ u*" 

u_9 u_10 u_11 

_obj2 

 
⚫ foreach_in_objects 
Iterates over all objects referenced by an object handle. Its usage is similar to the 

Tcl foreach command.  In the following example, all port objects are iterated over, 

and the name of each port is printed. 
 
tool-tcl> foreach_in_objects port [get_objects -type port *] { 

puts [get_object_name $port]} 

in[0] 

in[1] 

……… 

 
⚫ index_objects 
Retrieves one or more elements from an existing object handle by index, similar to 

the Tcl commands lindex and lrange. 



FusionShell User Guide  Version 202 5.12  

14 

In the following example, the first command retrieves the third element from the 

port objects. The second command retrieves the elements at indices 4, 5, and 6. 
 
tool-tcl> index_objects -print [get_objects -type port *] 3 

in[3] 

_obj2.2 

tool-tcl> index_objects -print [get_objects -type port *] 4 6 

in[4] in[5] in[6] 

_obj4 

 
⚫ remove _from _objects 
Removes specified elements from an existing object handle and returns a new 

object handle containing the remaining elements. In the following example, the 

clk port is removed from the port objects, and the resulting object handle is stored 

in the variable port. 
 
tool-tcl> set port [remove_from_objects [get_objects -type port 

*] {clk}] 

_obj2 

 
In addition to specifying object names directly, remove_from_objects also 

supports removing elements by providing another object handle. In the following 

example, a handle for the clk port is first created and then used to remove that 

port from the full port collection. 
 
tool-tcl> set clk_port [get_objects -type port clk] 

_obj1 

tool-tcl> set port [remove_from_object [get_objects -type port *] 

$clk_port] 

_obj3 

 
⚫ sizeof_objects 
Returns the number of elements referenced by the specified object handle. In the 

following example, the total number of port objects is printed. 
 
tool-tcl> sizeof_objects [get_objects -type port *] 

36 

 

⚫ sort_objects 
Sorts elements in an object handle based on a specified property. In the following 

example, objects are sorted by the name property using ascending order, 



FusionShell User Guide  Version 202 5.12  

15 

descending order, and dictionary order, respectively. 
 
tool-tcl> sort_objects -print [get_objects -type cell] name 

u_10 u_11 u_9 

_obj2 

tool-tcl> sort_objects -print -descending [get_objects -type 

cell] name 

u_9 u_11 u_10 

_obj4 

tool-tcl> sort_objects -print -dictionary [get_objects -type 

cell] name 

u_9 u_10 u_11 

_obj6 

  



FusionShell User Guide  Version 202 5.12  

16 

2-3 Extended Tcl Commands for Procedure Handling  
 
 
In Tcl, the proc command is used to create user-defined commands.  In the following 

example, proc creates a new command named add, which can be invoked in the same 

way as any other Tcl command. 
 
When the add command is invoked, the arguments 1 and 2 are passed to the local 

variables x and y, respectively, and the addition operation is performed. 
 
tool-tcl> proc add {x y} {puts [expr $x+$y]} 

tool-tcl> add 1 2 

3 

 
When invoking a procedure, the number of arguments provided must match the 

number of parameters defined in the proc declaration. However, if the parameter name 

is specified as args, the procedure can accept a variable number of arguments. 
 
In the following example, the add procedure is defined with args and is invoked with 

three arguments. 
 
tool-tcl> proc add {args} {puts $args} 

tool-tcl> add 1 2 3 

1 2 3 

 
 

Option -Based Procedure Definition 
 
 
Most built-in Tcl commands and tool-specific commands support option switches, 

which are typically specified using the following syntax: 
tool-tcl> command_name -option_name option_value 

 
When defining a user procedure that supports option switches, implementing such 

functionality using native Tcl constructs is complex and limited. The primary 

limitations include: 
 
⚫ Option switches may be specified in arbitrary order, whereas traditional proc 

definitions require fixed positional arguments. 
 



FusionShell User Guide  Version 202 5.12  

17 

⚫ Option switches may be specified multiple times, which cannot be properly 

handled by standard positional argument parsing. 
 
⚫ Option values cannot be validated, such as enforcing data types or value 

ranges. 
 
To address these limitations, FusionShell provides two built-in commands  —

parse_proc_args and define_proc_constraints — to enable robust definition 

and parsing of option-based procedures. 
 
 
Procedure Definition Using parse_proc_args and define_proc_constraints  
 
 
For procedures that support option switches, the parse_proc_args command 

must be invoked within the procedure body to parse the args argument and assign 

option values to variables or arrays. 
 
The define_proc_constraints command is used to define the syntax and 

constraints of option switches, including option names, value types, default values, 

and usage rules. Since parse_proc_args relies on these constraints to perform 

validation and argument assignment, both commands must be used together. 
 
⚫ parse_proc_args -to_vars 
The following example illustrates the use of parse_proc_args -to_vars. In this 

example, define_proc_constraints defines two option switches, -string and 

-int, with value types string and int, respectively.  
 
The -string option is mandatory, while the -int option has a default value of 1. 

A positional (non-switch) argument named bool is also defined. 
 
When the -to_vars option is used, local variables named string, int, and bool 

are automatically created within the procedure body and populated with the 

parsed values. 
 
proc print {args} { 

parse_proc_args -to_vars 

puts $string 

puts $int 

puts $bool 

} 



FusionShell User Guide  Version 202 5.12  

18 

 

define_proc_constraints print \ 

-info "puts all arguments" \ 

-default_arg {names=bool} \ 

-switch_arg "name=string type=string optional=false" \ 

-switch_arg "name=int type=int default=1" 

 
After the procedure is defined, the command usage can be queried using the -help 

option: 
 
tool-tcl> print -help 

Usage: print  # puts all arguments 

        -string <string> 

        [-int <int>] 

        [<bool>] 

 
If a mandatory option switch is omitted, an error is reported: 
 
tool-tcl> print -int 3 

Error: wrong # args: '-string' must be specified for procedure 

'print' 

 
Option value type checking is enforced. Since the -int option is defined as an 

integer, specifying a non-integer value results in an error: 
 
tool-tcl> print -string haha -int 3.0 

Error: wrong # args: expect integer value for '-int' of procedure 

'print' but get '3.0' 

 
Option switches and positional arguments may be specified in any order. In the 

following examples, the positional argument value true is assigned to bool: 
 
tool-tcl> print true -string haha -int 3 

haha 

3 

true 

tool-tcl> print -int 3 -string haha true 

haha 

3 

true 

 



FusionShell User Guide  Version 202 5.12  

19 

 
⚫ parse_proc_args -to_array 
The parse_proc_args -to_array option provides functionality similar to -

to_vars, except that parsed values are stored in an array instead of individual 

variables. 
 
In the following example, all option and positional argument values are stored in 

the array value, indexed by option or argument name. 
 
proc print {args} { 

parse_proc_args -to_array value 

puts $value(-string) 

puts $value(-int) 

puts $value(bool) 

} 

 

define_proc_constraints print \ 

-info "puts all arguments" \ 

-default_arg {names=bool} \ 

-switch_arg "name=string type=string optional=false" \ 

-switch_arg "name=int type=int default=1" 

 
 

How to use define_proc_constraints  
 
 
The define_proc_constraints command specifies the syntax rules and 

constraints for an option-based procedure. The available options are listed below. 

Note that the -reset option cannot be combined with any other options. 
 
define_proc_constraints  
    [-reset] 
        Reset all constraints associated with the procedure. 

 
    [-info <string>] 
        Specify the -help descriptive information for the procedure.  

 
    [-switch_arg <subswitch_list>]+ 
        Define option switches. 
        name=<string>  
            Option switch name. 



FusionShell User Guide  Version 202 5.12  

20 

        [optional=<bool>]  
            Specify whether the option is optional. 
        [default=<string>] 
            Specify the default value. 
        [enum=<list_of_string>] 
            Specify a list of allowed values. 
        [type=<string|string|list|bool|null|int|float>] 
            Specify the value type. 
        [min=<int>/<float>] 
            Specify the minimum value for int or float types. 
        [max=<int>/<float>] 
            Specify the maximum value for int or float types. 
        [multi=<bool>]  
            Specify whether the option may be specified multiple times. 
        [exclude_all=<bool>] 
            Specify whether the option is mutually exclusive with other options. 
 
    [-default_arg <subswitch_list>] 
        Define positional (non-switch) arguments. 
        names=<list_of_string>  
            Specify argument names.  
        [optional=<bool>]  
            Specify whether the arguments are optional. 
        [enum=<list_of_string>] 
            Specify a list of allowed values. 
        [type=<string|string|list|int|float>] 
            Specify the argument type. 
        [min=<int>/<float>] 
            Specify the minimum value for int or float types. 
        [max=<int>/<float>] 
            Specify the maximum value for int or float types. 
 
    [-enable_redirect] 
        Enable output redirection using '>' and '>>'. 
 
    [-must_include_any <list_of_string>]+ 
        Require that at least one option from the specified list be used. 
 
    [-exclusive <list_of_string>]+ 
        Define mutual exclusion rules between option switches. 
 



FusionShell User Guide  Version 202 5.12  

21 

Enhanced Procedure Flow Control  
 
 
When executing a long-running procedure, it is often necessary to guarantee that 

certain user-defined operations are performed when the procedure returns. 

Typical use cases include printing summary reports, releasing resources, or 

cleaning up the execution environment. 
 
FusionShell provides the built-in defer command to support exit -time execution 

control within a procedure. 
 
Using defer, users can register commands that are executed automatically when 

the procedure terminates. Two execution modes are supported:  
1. Unconditional execution on procedure exit 
2. Execution only when interrupted by Ctrl+C 
 
 
⚫ Unconditional Execution on Procedure Exit 
In the following example, a procedure performs a long-running loop operation. The 

defer command is used to register a command that prints the value of a variable 

when the procedure exits. 
 
This behavior is functionally similar to a Tcl8.6 try … finally …  construct with 

additional support for Ctrl+C exit: the deferred command is always executed when 

the procedure terminates, independent of the exit path. 
 

  
 
 

proc incr_loop {} { 
  defer {puts "i = $i when exiting proc"} 
 
  set i 0 
  while 1 { 

incr i 
# if {$i == 5000} {puts $ii} 

    if {$i == 10000} {return $i} 
  } 
} 
 
set var [incr_loop] 

defer.tcl 



FusionShell User Guide  Version 202 5.12  

22 

Normal Exit : When the procedure exits normally after reaching the termination 

condition, the deferred command is executed before returning the value. 
 
tool-tcl> source defer.tcl  

i = 10000 when exiting proc 

10000 

tool-tcl> puts $var 

10000 

 
 
Ctrl+C Interruption: If the procedure execution is interrupted by pressing Ctrl+C, 

the procedure exits immediately and the deferred command is still executed. 

However, since the procedure does not complete normally, subsequent set var 

command  is not executed. 
 
tool-tcl> source defer.tcl 

^C i = 3072 when exiting proc 

Info: Ctrl-C interrupt: 'source defer.tcl'. (SHELL-INTRCMD) 

tool-tcl> puts $var 

Error: can't read "var": no such variable 

 
Runtime Error Exit: If a runtime error occurs during procedure execution triggered 

by if {$i == 5000} {puts $ii}, the deferred command is executed before the 

error is reported. 
 
tool-tcl> source defer.tcl  

i = 5000 when exiting proc 

Error: can't read "ii": no such variable 

tool-tcl> puts $var 

Error: can't read "var": no such variable 

 
 
⚫ Execution Only on Ctrl+C Interruption 
In some scenarios, users may want to execute cleanup or recovery logic only when 

a procedure is interrupted, but not on normal completion. 
 
For this purpose, FusionShell provides the defer -intr option. In the following 

example, the deferred command is executed only when the procedure is 

interrupted by Ctrl+C. 
 



FusionShell User Guide  Version 202 5.12  

23 

  
 
Normal Exit: When the procedure completes normally, the deferred command is 

not executed. 
 
tool-tcl> source defer.tcl  

10000 

tool-tcl> puts $var 

10000 

 
Ctrl+C Interruption with Recovery: When the procedure is interrupted by Ctrl+C, 

the deferred command is executed, and control is returned to the script. This 

allows the script to continue execution instead of terminating immediately. As a 

result, set var is executed successfully after the interruption. 
 
tool-tcl> source defer.tcl 

^C Info: Ctrl-C interrupt is handled by 'defer -intr' command. 

(SHELL-INTRRECOVER) 

i = 4095 when exiting proc 

4095 

tool-tcl> puts $var 

4095 

 
In this mode, defer -intr effectively allows the procedure to intercept and 

recover from Ctrl+C interruptions, enabling customized interrupt handling and 

improving script robustness. 
 
For detailed information about Ctrl+C interrupt behavior, refer to the section 

Ctrl+C Interrupt Handling. 
  

proc incr_loop {} { 
  defer -intr {puts "i = $i when exiting proc"; return $i;} 
 
  set i 0 
  while 1 { 

incr i 
    if {$i == 10000} {return $i} 
  } 
} 
 
set var [incr_loop] 

defer.tcl 



FusionShell User Guide  Version 202 5.12  

24 

2-4 Debugging Enhancements  
 
 
To support advanced debugging requirements for user scripts, FusionShell extends 

native Tcl debugging functionality with the following enhancements: 
 
Ctrl+C Interrupt Handling 
Enhanced Error Reporting  
Command Tracing  
OS Command Execution  
 
 

Ctrl+C Interrupt Handling 
 
 
FusionShell extends Ctrl+C interrupt handling to allow real-time termination of 

command execution. Interrupt handling is supported for: 
• Native Tcl commands  
• User-defined procedures 
• Loop constructs such as foreach, for, and while 
 
Pressing Ctrl+C during loop execution immediately terminates the loop: 
 
tool-tcl> while 1 {} 

^C 

Info: Ctrl-C interrupt: 'while 1 {}'. (SHELL-INTRCMD) 

 
Ctrl+C can also interrupt long-running Tcl commands : 
 
tool-tcl> after 100000000 

^C 

Info: Ctrl-C interrupt: 'after 100000000'. (SHELL-INTRCMD) 

 
Pressing Ctrl+C twice while in command input mode exits FusionShell: 
 
tool-tcl>  

Info: one more Ctrl-C to exit. (SHELL-INTR) 

tool-tcl>  

Info: thank you for using ……… 

 



FusionShell User Guide  Version 202 5.12  

25 

When entering multi -line command mode using {}, Ctrl+C cancels the current 

command input : 
 
tool-tcl> if {$a == 0} { 

...  

Info: Ctrl-C interrupt: 'if {$a == 0} {'. (SHELL-INTRCMD) 

tool-tcl> 

 

 

Enhanced Error Reporting  
 
 
Script execution errors can be diagnosed using the error_info command, which 

reports detailed error location information. 
 
The following example shows error reporting for an error occurring in the 

interactive shell. The error_info command reports the shell line number where 

the error occurred. 
 
tool-tcl> set a  

Error: can't read "a": no such variable 

tool-tcl> error_info 

……………… 

---------------------------------------------------------------- 

<shell> line 1: 

  set a 

 
When executing scripts using the source command, error_info reports both: 
• The shell line that invoked source 
• The line number within the script file where the error occurred 
 
tool-tcl> source user.tcl  

Error: can't read "a": no such variable 

tool-tcl> error_info 

……………… 

---------------------------------------------------------------- 

<shell> line 1: 

  source user.tcl 

"user.tcl", line 1: 

  set a 

 



FusionShell User Guide  Version 202 5.12  

26 

Command Tracing  
 
 
In native Tcl behavior, the source command prints only the command output 

results, not the commands themselves. This behavior makes script debugging 

more difficult. 
 
FusionShell enhances the source command by adding the -echo option. When 

this option is specified, both the executed commands and their outputs are 

displayed. Commands are prefixed with <tcl> to indicate that they represent 

command statements.  
 
Example  
Assume the script file user.tcl contains the following commands: 
set a 0 

set b 1 

 
Native Tcl behavior: 
tool-tcl> source user.tcl  

0 

1 

 
FusionShell enhanced behavior: 
tool-tcl> source -echo user.tcl  

<tcl> set a 0 

0 

<tcl> set b 1 

1 

 
 
OS  Command Execution  
 
 
FusionShell supports executing OS  commands using two methods . 
 
⚫ Executing OS  Commands Using exec  
OS  commands can be executed using the Tcl exec command:  
 
tool-tcl> exec gvim user.tcl  

tool-tcl> exec mkdir aa 

 



FusionShell User Guide  Version 202 5.12  

27 

The exec command supports different execution modes . When -shellmode is 

specified, shell wildcard expansion is supported: 
 
tool-tcl> exec -shellmode ls *.log 

 
When -tty is specified, the command runs in an interactive terminal mode. All user 

inputs are processed in real time and are not recorded in the log. This mode is 

typically used for text-based interactive applications such as editors: 
 
tool-tcl> exec -tty vim 

 
⚫ Executing OS  Commands Directly  
FusionShell also supports direct execution of OS  commands from the command 

line, provided the command is accessible in the system environment (i.e., 

discoverable via which): 
 
tool-tcl> mkdir aa 

tool-tcl> ls 

aa 

tool-tcl> cd aa 

 
  



FusionShell User Guide  Version 202 5.12  

28 

2-5 Filelist Enhancements: flist Files 
 
 
In EDA tools, filelists are commonly used to describe HDL source files. Such filelists 

typically contain HDL file paths, compilation options, and comments. 
 
FusionShell extends the conventional filelist concept and introduces an enhanced list 

file format named flist. While flist reuses the general syntax structure of traditional 

filelists, it can be applied to any command or variable configuration, rather than being 

limited to HDL compilation. 
 
An flist file is a special file type in FusionShell. In practical usage, users frequently 

encounter scenarios where lists become excessively long, making scripts difficult to 

read and maintain. Typical examples include: 
• HDL file lists passed to analyze 
• Library file lists passed to read_libs 
• Path lists specified by set search_path 
 
All such lists can be placed into an flist file and converted into a standard Tcl list using 

the read_flist command, which can then be directly passed to commands or 

variables. 
 
⚫ flist Syntax Rules 
Elements in an flist file may be separated by spaces or newlines. For example: 
-verilog top.v sub.v 

 

is equivalent to: 
-verilog 

top.v 

sub.v 

 
To use an flist file, the read_flist command must be invoked. The command 

expands the flist content into a regular list, which can be directly embedded into 

commands or variable assignments. 
 
The flist mechanism supports  nested flist inclusion, standard comments  and 

special comments . 
 
 
 



FusionShell User Guide  Version 202 5.12  

29 

⚫ Standard Comment in flist file 
The following standard comment styles are supported: 
Single-line comments: #, // 
Multi-line comments: /* ... */ 
 
Example:  

  

 

Using the command:  
analyze -hdl_type verilog [read_flist rtl1.list]  

 
is equivalent to executing: 
analyze -hdl_type verilog "/design/rtl/define.v /design/rtl/top.v 

/design/rtl/sub.v" 

 
⚫ Special Comment in flist file 
FusionShell introduces a special comment syntax that allows commented content to 

be conditionally included during flist expansion. A special comment must follow the 

format: 
// dashthru <flist_items> 

 
Although <flist_items> appear within a comment, read_flist recognizes the 

keyword dashthru and includes the commented elements in the expanded list. This 

mechanism enables flexible modification of filelist behavior without altering the 

original list structure, ensuring compatibility with third-party tools. 
 
Example:  

  

# This is a comment 
-f rtl2.list 
// This is a comment 
/design/rtl/top.v //This is a comment 
/design/rtl/sub.v /* This is a comment*/ 
 

/* This is a comment line1 
  This is a comment line2 
*/ 
/design/rtl/define.v 
 

 
/design/rtl/define.v 
/design/rtl/top.v 
/design/rtl/sub.v 
 

 
/design/rtl/define.v 
// dashthru  +define+MACRO  
/design/rtl/top.v 
/design/rtl/sub.v 
// dashthru  /design/rtl/mod.v  

rtl1.list rtl2.list 

old.lst new.lst 



FusionShell User Guide  Version 202 5.12  

30 

The modified filelist new.lst remains fully compatible with  third-party tools and 

behaves identically to the original list old.lst. However, in FusionShell, executing: 
analyze -hdl_type verilog [read_flist new.list] 

 

is equivalent to: 
analyze -hdl_type verilog "/design/rtl/define.v +define+MACRO 

/design/rtl/top.v /design/rtl/sub.v /design/rtl/mod.v" 

 
⚫ Typical Usage Scenarios 
The flist mechanism allows users to externalize long command arguments or 

variable values into files, significantly improving script readability and maintainability. 
 
The following sections demonstrate four typical usage scenarios: 
 
Using flist to Specify Path Lists 
Using flist to Specify HDL Filelists 
Using flist to Specify Library Filelists 
 
 

Using flist to Specify Path Lists 
 
 
The flist mechanism can be used to define and extend the search_path variable 

in a structured and maintainable way. By externalizing path definitions into flist 

files, long and frequently modified path lists can be managed more cleanly. 
 

  
In the script, using the following command: 
set search_path [read_flist search.lst]  

 
is equivalent to executing: 
set search_path "$search_path /design/rtl design/rtl/top 

/design/lib/mem /design/lib/pad" 

 

// Search Path: search.lst 
 
$search_path  
/design/rtl 
/design/rtl/top 
// dashthru  -f libsearch.lst 

// Search Path: libsearch.lst 
 
/design/lib/mem  
/design/lib/pad 



FusionShell User Guide  Version 202 5.12  

31 

A regular Tcl list and an flist expansion can be freely mixed within the same 

variable assignment. For example: 
set search_path "$search_path /design/rtl design/rtl/top 

[read_flist libsearch.lst]" 

 
This is equivalent to: 
set search_path "$search_path /design/rtl design/rtl/top 

/design/lib/mem /design/lib/pad" 

 
 
Using flist to Specify HDL Filelists 
 
 
The flist mechanism can be used to describe complex HDL filelists, including 

compiler directives, include paths, and mixed-language source files. This approach 

significantly improves the readability and maintainability of HDL compilation 

scripts, especially for large designs. 
 

  

 
In FusionShell, executing: 
analyze -hdl_type verilog [read_flist rtl1.lst] 

 
is equivalent to executing: 
analyze -hdl_type verilog "+define+SIM +incdir+/design/rtl 

/design/rtl/top.v /design/rtl/sub_top.v -verilog 

/design/rtl/sub1.v -sverilog /design/rtl/sub2.sv" 

 
Regular Tcl lists and flist expansions can be freely combined. For example: 
analyze -hdl_type verilog "+incdir+/design [read_flist rtl1.lst] 

/design/rtl/sub3.sv" 

 
This is equivalent to: 

// RTL1 List: rtl1.lst 
 
// dashthru  +define+SIM  
+incdir+/design/rtl 
/design/rtl/top.v 
/design/rtl/sub_top.v 
-f rtl2.lst 

// RTL2 List: rtl2.lst 
 
-verilog /design/rtl/sub1.v 
-sverilog /design/rtl/sub2.sv 



FusionShell User Guide  Version 202 5.12  

32 

analyze -hdl_type verilog "+incdir+/design +define+SIM 

+incdir+/design/rtl /design/rtl/top.v /design/rtl/sub_top.v -

verilog /design/rtl/sub1.v -sverilog /design/rtl/sub2.sv 

/design/rtl/sub3.sv" 

 
When multiple flist files are required, they can be specified simultaneously in a 

single read_flist invocation. For example: 
analyze -hdl_type verilog [read_flist rtl1.lst rtl2.lst] 

 
 
Using flist to Specify Library Filelists 
 
 
The flist mechanism can also be applied to library filelists used by the 

read_libs command. By externalizing library paths into flist files, users can 

manage large and frequently changing library sets in a modular and reusable 

manner.  
 

  
 
In FusionShell, executing: 
read_libs [read_flist rtl1.lst] 

 
is equivalent to executing: 
read_libs /design/lib/pad.lib /design/lib/pll.lib 

/design/lib/mem32x32.lib /design/lib/mem32x64.lib 

 
Regular Tcl lists and flist expansions can be freely combined. For example: 
read_libs "[read_flist lib1.lst] /design/lib/mem64x64.lib" 

 
This is equivalent to: 
read_libs "/design/lib/pad.lib /design/lib/pll.lib 

/design/lib/mem32x32.lib /design/lib/mem32x64.lib 

/design/lib/mem64x64.lib" 

// RTL1 List: lib1.lst 
 
/design/lib/pad.lib 
// dashthru  /design/lib/pll.lib 
-f lib2.lst 

// RTL2 List: lib2.lst 
 
/design/lib/mem32x32.lib 
/design/lib/mem32x64.lib 
 



FusionShell User Guide  Version 202 5.12  

33 

 
When multiple flist files are required, they can be specified together in a single 

read_flist command. For example:  
read_libs [read_flist lib1.lst lib2.lst] 

 
  



FusionShell User Guide  Version 202 5.12  

34 

2-6 Tab Key Enhancements  
 
 
In conventional Tcl command -line environments, the Tab key is typically limited to 

command name completion and listing, and cannot be applied to subcommands or 

argument values. 
 
FusionShell extends the Tab key functionality to provide comprehensive completion 

and listing support not only for commands, but also for subcommands, variables, 

command options, and valid option values. This enhancement enables more efficient 

and flexible command -line interaction. 
 
 

Command Completion and Listing  
 
 
When an incomplete command is entered at the command prompt and the Tab key 

is pressed, FusionShell attempts to automatically complete the command name. If 

multiple commands match the current input, FusionShell displays a list of all 

commands that begin wi th the specified prefix. 
 
Command completion and listing apply to both native Tcl commands and user -

defined procedures. 
 
In the example below, entering ge and pressing Tab does not result in a unique 

match, since multiple commands start with get. FusionShell therefore completes 

the input to get. Pressing Tab again displays all matching commands. 
 
tool-tcl> ge<tab> 

tool-tcl> get<tab> 

get_cells         get_functions     get_modules       get_nets ……  

 
Command completion and listing are also supported within command 

substitutions []. As shown below, Tab can be used in the same way inside brackets.  
 
tool-tcl> puts [ge<tab> 

tool-tcl> puts [get<tab> 

get_cells         get_functions     get_modules       get_nets ……  

 
 



FusionShell User Guide  Version 202 5.12  

35 

Subcommand Completion and Listing  
 
 
Commands with subcommands (such as string and file) also support Tab-

based completion and listing for their subcommands. The behavior is identical to 

that of command completion and is supported both at the command prompt and 

within command substitutions. 
 
Examples of subcommand completion at the command prompt and inside 

brackets are shown below. 
 
tool-tcl> string tr<tab> 

tool-tcl> string trim<tab> 

trim   trimleft   trimright 

 
tool-tcl> puts [string tr<tab> 

tool-tcl> puts [string trim<tab> 

trim   trimleft   trimright 

 
 
Command Option Completion and Listing  
 
 
Command options can also be completed and listed using the Tab key. This 

functionality is consistent with command completion behavior and is supported 

both at the command prompt and within command substitutions.  
 
Examples of option completion and listing are shown below. 
 
tool-tcl> get_objects -<tab> 

-filter   -hier     -of       -quiet    -sorted   -type 

tool-tcl> get_objects -ty<tab> 

tool-tcl> get_objects -type 

 
tool-tcl> puts [get_objects -<tab> 

-filter   -hier     -of       -quiet    -sorted   -type 

tool-tcl> puts [get_objects -ty<tab> 

tool-tcl> puts [get_objects -type 

 
In addition, when an option accepts an enumerated set of values, the Tab key can 

be used to complete and display all valid enumeration values. The following 



FusionShell User Guide  Version 202 5.12  

36 

example shows all supported values for the -type option. 
 
tool-tcl> get_objects -type <tab> 

cell        floorplan    interface    lef_pin      lef_tech     lib_cell     

module       package      pin          task         class        function     

lef_cell     lef_site     lib          lib_pin      net          parameter    

port         text_macro 

 
 
Variable Completion and Listing 
 
 
Variable completion and listing follow the same principles as command 

completion. When an incomplete variable name is entered and the Tab key is 

pressed, FusionShell attempts to complete the variable name. If multiple variables 

match the prefix, all matching variable names are displayed. 
 
Variable completion and listing apply to both tool-defined variables and user-

defined variables, and support both variable definition and variable reference 

contexts. 
 
In the example below, multiple variables begin with hdl_, so FusionShell 

completes the prefix and then displays all matching variables. 
 
tool-tcl> set hd<tab> 

tool-tcl> set hdl_<tab> 

hdl_allow_static_task    hdl_default_ext    hdl_default_std              

hdl_inst_array_pre_postfix    hdl_max_limit                

hdl_soc_integration_mode    hdl_warn_threshold 

 
Both set and unset commands support Tab -based completion for user-defined 

variables, as shown below. 
 
tool-tcl> set aa 0 

tool-tcl> set aaa 0 

tool-tcl> set a<tab> 

tool-tcl> set aa<tab> 

aa aaa 

tool-tcl> unset a<tab> 

tool-tcl> unset aa<tab> 

aa aaa 



FusionShell User Guide  Version 202 5.12  

37 

 
Variable references using the $ prefix also support completion and listing. 
 
tool-tcl> puts $hd<tab> 

tool-tcl> puts $hdl_<tab> 

hdl_allow_static_task    hdl_default_ext    hdl_default_std              

hdl_inst_array_pre_postfix    hdl_max_limit                

hdl_soc_integration_mode    hdl_warn_threshold 

 
 
File Path Completion and Listing 
 
 
The Tab key can also be used to complete and list file paths. When entering a file 

name or directory path, pressing Tab completes the path or displays all matching 

files and directories. 
 
The example below shows file name completion. 
 
tool-tcl> open dash<tab> 

tool-tcl> open dashrtl.<tab> 

dashrtl.cmd   dashrtl.log 

 
The following example lists files and directories under the ../tcl/ path. 
 
tool-tcl> open ../tcl/<tab> 

tc  work  script 

 
  



FusionShell User Guide  Version 202 5.12  

38 

3 
3 FusionShell Python  Mode  
 
FusionShell Python mode is fully compatible with the official CPython release, 

supporting the complete Python syntax and functionality. Users can freely leverage 

third-party Python libraries to perform secondary development. In addition, Python 

mode provides built-in functions corresponding to Tcl commands, allowing users to 

directly invoke EDA tool operations within the Python environment. 
 
For more information about the capabilities of FusionShell Python mode, refer to the 

following sections: 
 
⚫ Python Language Overview  
⚫ Python Version  
⚫ Importing Third-Party Python Libraries 
⚫ Invoking Built-in Tool Functions and Variables 
 
  



FusionShell User Guide  Version 202 5.12  

39 

3-1 Python Language Overview  
 
 
Python is a widely adopted scripting language known for its design philosophy of 

elegance, clarity, and simplicity. Its concise and readable syntax enables developers to 

accomplish more with fewer lines of code. Python supports multiple programming 

paradigms, including procedural, object-oriented, and functional programming. 
 
Python is extensively used in a wide range of domains, such as web development, data 

analysis, artificial intelligence, scientific computing, and scripting. 
 
Key characteristics of Python include: 
 
⚫ Interpreted Language  
Python is an interpreted language, meaning that code is executed line by line at runtime. 

This allows rapid development, testing, and debugging. 
 
⚫ Dynamic Typing  
Python uses dynamic typing, so variable types do not need to be explicitly declared. 

While this increases flexibility, users should be aware of potential type-related runtime 

errors. 
 
⚫ Object-Oriented Support  
Python supports object-oriented programming, including classes, objects, inheritance, 

and polymorphism.  
 
⚫ Extensive Standard and Third-Party Libraries 
Python provides a rich standard library and a vast ecosystem of third-party libraries, 

enabling efficient implementation of a wide variety of applications, such as data 

analysis, machine learning, and visualization. 
 
⚫ Cross-Platform Support  
Python can run on multiple operating systems. 
 

  



FusionShell User Guide  Version 202 5.12  

40 

3-2 Python Version  
 
 
FusionShell Python mode is based on CPython version 3.8.20 . The Python version 

information can be queried as shown below: 
 
tool-py> import sys 

tool-py> print(sys.version) 

3.8.20 (default, Oct 11 2024, 10:13:03)  

[GCC 9.3.1 20200408 (Red Hat 9.3.1-2)] 

 
 

3-3 Importing Third-Party Python Libraries 
 
 
Integrating Python with EDA tools provides significant advantages in multiple 

dimensions, including data analysis, automation, and ecosystem support. FusionShell 

Python mode enables these benefits by allowing direct use of Python's extensive third-

party library ecosystem. Key advantages include: 
 
⚫ Powerful Data Analysis and Visualization 
Python offers robust data processing and visualization libraries such as NumPy, pandas, 

and matplotlib. These libraries can be combined with EDA tool outputs to enable in-

depth analysis and intuitive visualization of design data. 
 
⚫ Automation  
Python scripting allows users to automate many EDA workflows, including simulation, 

layout verification, and performance analysis. This improves efficiency and reduces the 

risk of human error. 
 
⚫ Community Ecosystem  
Python has a large and active developer community, providing abundant resources 

such as tutorials, libraries, and example code. Users can easily find solutions and 

benefit from shared experience. 
 
In FusionShell Python mode, importing third-party libraries follows the same syntax 

and behavior as standard Python. Examples are shown below. 
 



FusionShell User Guide  Version 202 5.12  

41 

Import an entire module: 
 
tool-py> import math 

 
Import a module with an alias: 
 
tool-py> import numpy as np 

 
Import specific objects from a module: 
 
tool-py> from datetime import date 

 
Import all objects from a module: 
 
tool-py> from math import * 

 
  



FusionShell User Guide  Version 202 5.12  

42 

3-4 Invoking Built-in Tool Functions and Variables 
 
 
Similar to Tcl mode, where Tcl commands and variables are used to control and 

configure the tool, Python mode provides Python functions and variables for tool 

interaction. 
 
Most commands and variables in Tcl mode have corresponding representations in 

Python mode. An example of the naming correspondence is shown below. 
 
Mode  Built-in Tool Commands (Functions)  Built-in Tool Variables 
Tcl analyze $hdl_default_std 
Python  tcl.proc.analyze hdl_default_std 

 
 

Python Built-in Functions 
 
 
Python built-in functions correspond directly to Tcl built-in commands, with a one-

to-one name mapping. These functions are provided in the tcl.proc namespace.  
 
The Tcl commands puts and string correspond to the Python functions 

tcl.proc.puts and tcl.proc.string. In the below example,  tcl.proc.puts 

prints the string haha and returns an empty string, while tcl.proc.string returns 

the result as a string '4'. 
 
tool-py> tcl.proc.puts('haha') 

haha 

'' 

tool-py> tcl.proc.string('length','haha') 

'4' 

 
The following example demonstrates how to read RTL and execute EDA operations 

in Python mode, equivalent to invoking analyze, read_flist, and elaborate 

commands in Tcl mode.  
 
tool-py> tcl.proc.analyze('-hdl_type', 'verilog', 

tcl.proc.read_flist('rtl.list')) 

tool-py> tcl.proc.elaborate('top') 



FusionShell User Guide  Version 202 5.12  

43 

Python Built-in Variables 
 
 
Python built-in tool variables share the same names as their Tcl counterparts and 

can be accessed directly, as shown below: 
 
tool-py> search_path 

'.' 

 
However, directly assigning values to these variables using standard Python 

assignment syntax does not apply the change to the tool environment, even 

though the variable value appears to be updated: 
 
tool-py> search_path = '. /design/rtl' 

tool-py> search_path 

'. /design/rtl' 

 
To correctly modify tool variables in Python mode, users must use 

tcl.proc.set_tool_var or tcl.proc.set, as shown below: 
 
tool-py> tcl.proc.set_tool_var('search_path','. /design/rtl') 

'. /design/rtl' 

tool-py> search_path 

'. /design/rtl' 

tool-py> tcl.proc.set('search_path','. /design/lib') 

'. /design/lib' 

tool-py> search_path 

'. /design/lib' 

 
  



FusionShell User Guide  Version 202 5.12  

44 

4 
4 FusionShell Hybrid Mode  
 
FusionShell Hybrid Mode is not a standalone command -line mode. Instead, it refers to 

the capability of using Tcl and Python statements together within the same script. As 

described previously, FusionShell allows seamless and real-time switching between Tcl 

mode and Python mode without exiting the shell. For more information, refer to 1-2 

Switching Between Tcl Mode and Python Mode . 
 
This chapter describes how to use FusionShell Hybrid Mode. The following sections are 

covered: 
 
⚫ Using Tcl Commands and Variables in Python Mode  
⚫ Using Python Functions and Variables in Tcl Mode 
⚫ Tcl+Python Hybrid Script Examples  
 
  



FusionShell User Guide  Version 202 5.12  

45 

4-1 Using Tcl Commands and Variables in Python Mode  
 
 
Tcl commands and variables can be classified into two categories: built -in tool 

commands/variables and user -defined commands/variables.  
 
The usage of built-in Tcl commands and variables in Python mode has been described 

in 3-4 Invoking Built-in Tool Functions and Variables. This section focuses on the 

usage of user-defined Tcl commands and variables in Python mode. 
 
 

Using User-Defined Tcl Commands in Python Mode  
 
 
Similar to built-in Tcl commands, user-defined Tcl procedures are exposed in the 

tcl.proc namespace when operating in Python mode.  
 
The following example illustrates this behavior. A Tcl procedure named add is first 

defined in Tcl mode. After switching to Python mode using the pymode command, 

the procedure can be invoked directly through tcl.proc.add. 
 
tool-tcl> proc add {prefix a b} {return "$prefix: [expr $a+$b]"} 

tool-tcl> pymode 

tool-py> tcl.proc.add('result', '1', '2') 

result: 3 

 
 
Using User-Defined Tcl Variables in Python Mode 
 
 
In Python mode, user-defined Tcl variables can be accessed and modified directly. 

As shown in the following example, Tcl variable values — regardless of whether 

they represent integers, booleans, or strings — are converted to string type when 

accessed from Python. 
 
tool-tcl> set v1 123 

123 

tool-tcl> set v2 true 

true 

tool-tcl> set v3 "hello world" 



FusionShell User Guide  Version 202 5.12  

46 

hello world 

tool-tcl> pymode 

tool-py> v1 

'123' 

tool-py> v2 

'true' 

tool-py> v3 

'hello world' 

 
Variables are shared across Python mode and Tcl mode. Therefore, modifying a 

variable in Python mode will also update its value in Tcl mode, as demonstrated 

below. 
 
tool-py> v1='456' 

tool-py> v2='false' 

tool-py> v3='hello' 

tool-py> tclmode() 

tool-tcl> puts $v1 

456 

tool-tcl> puts $v2 

false 

tool-tcl> puts $v3 

hello 

 
  



FusionShell User Guide  Version 202 5.12  

47 

4-2 Using Python Functions and Variables in Tcl Mode 
 
 
Python mode and Tcl mode share the same execution environment. As a result, Python 

functions and variables defined in Python mode can be accessed directly from Tcl mode. 
 
This section describes how to use user-defined Python functions and variables in Tcl 

mode.  
 
 

Using User-Defined Python Functions in Tcl Mode 
 
 
To invoke a user-defined Python function as a Tcl command, the function must be 

defined within the tcl.proc namespace.  If a Python function is defined at the top 

level (outside of tcl.proc), it must be invoked using the Tcl call command.  
 
The following example demonstrates invoking a Python function using call. 
 
tool-py> def add(prefix,a,b): return f"{prefix}: {int(a)+int(b)}" 

tool-py> tclmode() 

tool-tcl> call add result 1 2 

result: 3 

 
Alternatively, a Python function can be explicitly registered as a Tcl command by 

adding it to the tcl._procs dictionary, as shown below. 
 
tool-py> def add(prefix,a,b): return f"{prefix}: {int(a)+int(b)}" 

tool-py> tcl._procs['add'] = add 

tool-py> tclmode() 

tool-tcl> add result 1 2 

Warning: proc constraint not found for "add". (TCL-UNCONSTR) 

result: 3 

 
 
Using User-Defined Python Variables in Tcl Mode 
 
 
User-defined Python variables can be accessed and modified directly in Tcl mode. 
However, to be accessible from Tcl mode, Python variables must be defined as 



FusionShell User Guide  Version 202 5.12  

48 

strings in Python mode. 
 
If a Python variable is defined using a non-string data type (for example, an integer), 

referencing it in Tcl mode will result in an error, as shown below. 
 
tool-py> v1=123 

tool-py> tclmode() 

tool-tcl> $v1 

TypeError: startswith first arg must be str or a tuple of str, 

not int 

 
The correct usage is shown in the following example: 
 
tool-py> v1='123' 

tool-py> v2='true' 

tool-py> v3='hello world' 

tool-py> tclmode() 

tool-tcl> puts $v1 

123 

tool-tcl> puts $v2 

true 

tool-tcl> puts $v3 

hello world 

 
Variables are shared across Python mode and Tcl mode. Therefore, modifying a 

variable in Tcl mode will also update its value in Python  mode, as demonstrated 

below. 
 
tool-tcl> set v1 456 

456 

tool-tcl> set v2 false 

false 

tool-tcl> set v3 hello 

hello 

tool-tcl> pymode 

tool-py> v1 

'456' 

tool-py> v2 

'false' 

tool-py> v3 

'hello'  



FusionShell User Guide  Version 202 5.12  

49 

4-3 Tcl+Python Hybrid Script Examples  
 
 
Tcl and Python hybrid scripts can be executed in both interactive (command -line) mode 

and batch (script) mode. 
 
 

Interactive Mode Example  
 
 
When starting FusionShell in interactive mode, the language  mode (Tcl or Python) 

must match the first language used in the hybrid script. If the script begins with Tcl 

statements, FusionShell must be launched  in Tcl mode. If the script begins with 

Python statements, FusionShell must be launched  in Python mode. 
 
In the following example, the hybrid script begins with Python statements. 

Therefore, FusionShell is launched with the -pymode option to enter Python mode 

initially. 
 
%  <tool_exec_file> -pymode 

tool-py> v1='123' 

tool-py> v2='true' 

tool-py> v3='hello world' 

tool-py> tclmode() 

tool-tcl> puts $v1 

123 

tool-tcl> puts $v2 

true 

tool-tcl> puts $v3 

hello world 

 
 
Batch Mode Example  
 
 
In batch mode, the language  mode  (Tcl or Python) is also determined by the first 

language used in the hybrid script. If the script starts with Tcl statements, 

FusionShell must be launched in Tcl  mode. If the script starts with Python 

statements, FusionShell must be launched in Python  mode . 
 



FusionShell User Guide  Version 202 5.12  

50 

In the following example, the hybrid script file mix_tcl_py.scr begins with Tcl 

statements. Therefore, FusionShell is launched without the -pymode option to 

enter Tcl mode initially. 
 

 
%  <tool_exec_file> -f mix_tcl_py.scr 

# Start With Tcl Script 

<tcl> set v1 123 

123 

<tcl> set v2 true 

true 

<tcl> set v3 "hello world" 

hello world 

<tcl> pymode 

 

# Switch To Python Script 

<py> v1='456' 

<py> v2='false' 

<py> v3='hello' 

<py> tclmode() 

 

# Switch To Tcl Script 

<tcl> puts $v1 

456 

# Start With Tcl Script 
set v1 123 
set v2 true 
set v3 "hello world" 
pymode  
 
# Switch To Python Script 
v1='456' 
v2='false' 
v3='hello' 
tclmode() 
 
# Switch To Tcl Script 
puts $v1  
puts $v2  
puts $v3  

mix_tcl_py.scr 



FusionShell User Guide  Version 202 5.12  

51 

<tcl> puts $v2 

false 

<tcl> puts $v3 

Hello 

  



FusionShell User Guide  Version 202 5.12  

52 

A  
Appendix A  Common  Tcl Commands  
 
This appendix lists the common  Tcl8.5 commands supported by FusionShell , including 

their available subcommands and support status. 
 
Command  Subcommand  Support Status  
after -- Supported  

cancel Planned  
idle Planned  
info Planned  

append  -- Supported  
apply  -- Supported  
array anymore  Supported  

donesearch  Supported  
exists Supported  
get Supported  
names  Supported  
nextelement  Supported  
set Supported  
size Supported  
startsearch Supported  
statistics Supported  
unset Supported  

bgerror -- Planned  
binary format  Planned  

scan  Planned  
break -- Supported  
catch -- Supported  
cd  -- Supported  
chan  blocked Planned  

close Supported  
configure Planned  



FusionShell User Guide  Version 202 5.12  

53 

copy  Planned  
create Planned  
eof Supported  
event Planned  
flush Supported  
gets Supported  
names  Supported  
pending  Planned  
postevent Planned  
puts Supported  
read  Supported  
seek  Supported  
tell Supported  
truncate Planned  

clock add  Planned  
clicks Planned  
format  Planned  
m icroseconds Planned  
m illiseconds Planned  
scan  Planned  
seconds  Planned  

close -- Supported  
concat  -- Supported  
continue  -- Supported  
dde  servername  Planned  

execute Planned  
poke  Planned  
request  Planned  
services Planned  
eval Planned  

dict append  Supported  
create Supported  
exists Supported  
filter Supported  
for Supported  
get Supported  
incr Supported  
info Supported  
keys Supported  



FusionShell User Guide  Version 202 5.12  

54 

lappend  Supported  
m erge Supported  
remove  Supported  
replace Supported  
set Supported  
size Supported  
unset Supported  
update  Supported  
values Supported  
w ith Supported  

encoding  convertfrom  Unsupported  
convertto Unsupported  
dirs Unsupported  
names  Unsupported  
system  Unsupported  

eof -- Supported  
error -- Supported  
eval -- Supported  
exec -- Supported  
exit -- Supported  
expr -- Supported  
fblocked -- Planned  
fconfigure -- Planned  
fcopy -- Planned  
file atime  Planned  

attributes Planned  
channels  Supported  
copy  Planned  
delete Planned  
dirname  Supported  
executable Supported  
exists Supported  
extension Supported  
isdirectory Supported  
isfile Supported  
join Supported  
link Planned  
lstat Planned  
m kdir Planned  



FusionShell User Guide  Version 202 5.12  

55 

m time  Planned  
nativename  Planned  
normalize Planned  
owned  Supported  
pathtype Supported  
readable  Supported  
readlink Supported  
rename  Planned  
rootname  Supported  
separator Supported  
size Supported  
split Planned  
stat Planned  
system  Planned  
tail Supported  
type  Supported  
volumes  Supported  
w ritable Supported  

fileevent -- Planned  
flush -- Supported  
for -- Supported  
foreach -- Supported  
format  -- Supported  
gets -- Supported  
glob -- Supported  
global -- Supported  
history -- Supported  

add  Planned  
change  Planned  
clear Supported  
event Planned  
info Planned  
keep  Supported  
nextid Planned  
redo  Planned  

if -- Supported  
incr -- Supported  
info args Planned  

body  Planned  



FusionShell User Guide  Version 202 5.12  

56 

cmdcount  Planned  
commands  Supported  
complete  Planned  
default Planned  
exists Supported  
frame  Planned  
functions Planned  
globals Planned  
hostname  Supported  
level Planned  
library Planned  
loaded  Planned  
locals Planned  
nameofexecutable  Supported  
patchlevel Planned  
procs Planned  
script Planned  
sharedlibextension Planned  
tclversion Supported  
vars Planned  

interp alias Planned  
aliases Planned  
bgerror Planned  
create Planned  
debug  Planned  
delete Planned  
eval Planned  
exists Planned  
expose  Planned  
hide Planned  
hidden  Planned  
invokehidden  Planned  
limit Planned  
issafe Planned  
m arktrusted Planned  
recursionlimit Planned  
share Planned  
slaves Planned  
target Planned  



FusionShell User Guide  Version 202 5.12  

57 

transfer Planned  
join -- Supported  
lappend  -- Supported  
lassign -- Supported  
lindex -- Supported  
linsert -- Supported  
list -- Supported  
llength -- Supported  
lmap  -- Supported  
load -- Supported  
lrange -- Supported  
lrepeat -- Supported  
lreplace -- Supported  
lreverse -- Supported  
lsearch -- Supported  
lset -- Supported  
lsort -- Supported  
m emory  active Unsupported  

break_on_malloc  Unsupported  
info Unsupported  
init Unsupported  
objs Unsupported  
onexit Unsupported  
tag  Unsupported  
trace Unsupported  
trace_on_at_malloc  Unsupported  
validate Unsupported  

namespace  children Supported  
code  Planned  
current Supported  
delete Planned  
ensemble  Planned  
eval Supported  
exists Supported  
export Planned  
forget Planned  
import  Planned  
inscope  Planned  
origin Planned  



FusionShell User Guide  Version 202 5.12  

58 

parent Supported  
path Planned  
qualifiers Supported  
tail Supported  
upvar Planned  
unknown  Planned  
w hich Planned  

open  -- Supported  
package  forget Unsupported  

ifneeded  Unsupported  
names  Unsupported  
prefer Unsupported  
present Unsupported  
provide Unsupported  
require Unsupported  
unknown  Unsupported  
vcompare  Unsupported  
versions Unsupported  
vsatisfiers Unsupported  

parray -- Planned  
pid -- Supported  
pkg_mkIndex  -- Planned  
proc  -- Supported  
puts -- Supported  
pwd  -- Supported  
re_syntax -- Planned  
read -- Supported  
regexp  -- Supported  
regsub  -- Supported  
rename  -- Supported  
return -- Supported  
scan  -- Supported  
seek  -- Supported  
set -- Supported  
socket -- Planned  
source -- Supported  
split -- Supported  
string compare  Supported  

equal Supported  



FusionShell User Guide  Version 202 5.12  

59 

first Supported  
index  Supported  
is Supported  
last Supported  
length  Supported  
m ap  Supported  
m atch Supported  
range  Supported  
repeat  Supported  
replace Supported  
reverse Supported  
tolower  Supported  
totitle Supported  
toupper  Supported  
trim Supported  
trimleft Supported  
trimright Supported  
bytelength Supported  
w ordend  Unsupported  
w ordstart Unsupported  

subst -- Supported  
switch -- Supported  
tell -- Supported  
time  -- Supported  
trace add  Planned  

remove  Planned  
info Planned  
variable Planned  
vdelete Planned  
vinfo Planned  

unknown  -- Supported  
unload  -- Planned  
unset  -- Supported  
update  -- Planned  
uplevel -- Supported  
upvar  -- Supported  
variable -- Supported  
vwait -- Planned  
while -- Supported  



FusionShell User Guide  Version 202 5.12  

60 

B  
Appendix B   Additional Tool Commands  
 
This appendix lists additional built-in tool commands provided by FusionShell.  These 

commands extend standard Tcl functionality and are categorized by command type. 
 
Command Category  Tool Command  Support Status  

Procedure Handling  
define_proc_constraints Supported  
parse_proc_args  Supported  
defer Supported  

Object Handling  

add_to_object s Supported  
compare _objects Supported  
filter_objects Supported  
foreach_in_objects Supported  
get_objects Supported  
get_object_name  Supported  
get_object_type Supported  
index_objects Supported  
remove_from_object s Supported  
sizeof_objects Supported  
sort_objects Supported  

Others  

alias Supported  
apropos  Supported  
assert Supported  
call Supported  
help Supported  
man  Supported  
plugin Supported  
pymode  Supported  
un alias Supported  

 


	Copyright Notice
	Contents
	1 FusionShell Overview
	1-1 Starting and Exiting FusionShell
	Starting FusionShell in Interactive Mode
	Starting FusionShell in Batch Mode
	Exiting FusionShell

	1-2 Switching Between Tcl Mode and Python Mode
	Identifying the Current Command-Line Mode
	Switching Between Command-Line Modes
	Sharing Variables and Commands Between Modes


	2 FusionShell Tcl Mode
	2-1 Tcl Language Overview
	2-2 Extended Tcl Commands for Object Handling
	Creating and Storing Object Handles
	Operating on Object Handles

	2-3 Extended Tcl Commands for Procedure Handling
	Option-Based Procedure Definition
	Procedure Definition Using parse_proc_args and define_proc_constraints
	How to use define_proc_constraints
	Enhanced Procedure Flow Control

	2-4 Debugging Enhancements
	Ctrl+C Interrupt Handling
	Enhanced Error Reporting
	Command Tracing
	OS Command Execution

	2-5 Filelist Enhancements: flist Files
	Using flist to Specify Path Lists
	Using flist to Specify HDL Filelists
	Using flist to Specify Library Filelists

	2-6 Tab Key Enhancements
	Command Completion and Listing
	Subcommand Completion and Listing
	Command Option Completion and Listing
	Variable Completion and Listing
	File Path Completion and Listing


	3 FusionShell Python Mode
	3-1 Python Language Overview
	3-2 Python Version
	3-3 Importing Third-Party Python Libraries
	3-4 Invoking Built-in Tool Functions and Variables
	Python Built-in Functions
	Python Built-in Variables


	4 FusionShell Hybrid Mode
	4-1 Using Tcl Commands and Variables in Python Mode
	Using User-Defined Tcl Commands in Python Mode
	Using User-Defined Tcl Variables in Python Mode

	4-2 Using Python Functions and Variables in Tcl Mode
	Using User-Defined Python Functions in Tcl Mode
	Using User-Defined Python Variables in Tcl Mode

	4-3 Tcl+Python Hybrid Script Examples
	Interactive Mode Example
	Batch Mode Example


	Appendix A  Common Tcl Commands
	Appendix B  Additional Tool Commands



