FusionShell User Guide

Version 2025.12

DashThru

FusionShell User Guide Version 2025.12

Copyright Notice

Copyright © 2024-2026 DashThru Technology, Ltd. All Rights Reserved.

DashThru is the trademark of DashThru Technology, Ltd. All content, features, and
functionality of the FusionShell product, including but not limited to text, graphics,
logos, images, software, and any other materials, are protected by copyright,
trademark, and other intellectual property laws.

You may not reproduce, distribute, modify, transmit, display, perform, or otherwise use
any content or materials from DashThru or FusionShell without the express written
consent of DashThru Technology, except as permitted by applicable law. Unauthorized
use of any content or trademarks may result in legal action.

DashThru Technology reserves the right to modify, update, or discontinue any part of

FusionShell at any time without prior notice.

Trademarks
DashThru is a registered trademark or trademark of DashThru Technology, Ltd. in the
United States and other countries. Other product and company names mentioned

herein may be trademarks of their respective owners.

Disclaimer
DashThru Technology makes no representations or warranties about the accuracy,
reliability, completeness, or timeliness of the content provided by FusionShell. All

contentis provided "as is" without any express or implied warranties.

FusionShell User Guide Version 2025.12

Contents

1 FusionShell OVerview ...t e ee e ae 4
1-1 Starting and Exiting FusionShellcocoiiiiiiiiiiiiiiiiiieee. 5

1-2 Switching Between Tcl Mode and PythonMode cooiiiiiiienninn. 7

2 FusionShell TclMode ...t 9
2-1 TclLanguage OVEIVIEW ..o.uuiinitietie et et e ee et e e e e ee e e e eees 10
2-2 Extended Tcl Commands for Object Handlingcooooviiiiiiiiiiniiinn, 11

2-3 Extended Tcl Commands for Procedure Handlingc..ccceeveveene. 16
2-4 Debugging Enhancementscoooiiiiiiiiiii e 24
2-5 Filelist Enhancements: flist Filesooiiiiiiiiiii e 28
2-6 Tab Key Enhancementsc.ccoviiiiiiiiiiiiiii i eeen.. 34
3 FusionShell Python Mode ... e eee e 38
3-1 Python Language Overviewccccoooveviiiiiiiiiiiiiieinieiiiiinieeeeeiennn. 39

3-2 Python Versioncooiiiiiiiiiiiiie e 40

3-3 Importing Third-Party Python Librariesc..ccccoviiiiiiiiiiiiiiienne. 40
3-4 Invoking Built-in Tool Functions and Variablesccccoviiiiiiiinnn. 42
4 FusionShell Hybrid Mode e 44
4-1 Using Tcl Commands and Variables in Python Modec..... 45
4-2 Using Python Functions and Variablesin TclModeccccciiininn. 47

4-3 Tcl+Python Hybrid Script Examplescocoviiiiiiiiiiiieiieeieeeene. 49
Appendix A Common Tcl Commands oiiiiiiiiiiiiiiie e e 52

Appendix B Additional Tool Commandsccciiiiiiiiiiiiiiiiiiiiieieeiie e 60

FusionShell User Guide Version 2025.12

1 FusionShell Overview

FusionShellis a command-line user interface (CLI) developed by DashThru Technology.
It serves as the standard interface for users operating DashThru's EDA products.
FusionShell supports both Tcl and Python modes, accommodating traditional Tcl
scripting preferences while simultaneously providing users with a highly open Python
platform.

Users can switch between FusionShell's Tcl and Python modes freely and in real-time
using specific commands. Consequently, users can choose a workflow that best suits
their needs: utilizing exclusively Tcl mode, exclusively Python mode, or a hybrid
combination of both.

In Tcl mode, FusionShell extends and enhances the native Tcl language with multiple
advanced features to meet the development requirements of different user groups. In
Python mode, users can work in the same way as in standard Python environments,
while also leveraging a wide range of third-party Python packages to assist script
development.

For more information about FusionShell features, please refer to the following sections:
e FusionShell Tcl Mode

e FusionShell Python Mode
e FusionShell Hybrid Mode

FusionShell User Guide Version 2025.12

1-1 Starting and Exiting FusionShell

When launching FusionShell, users can specify whether to enter interactive mode or
batch mode, and whether to start in Tcl mode or Python mode. In interactive mode,
commands are entered and executed manually by the user. In batch mode, FusionShell
automatically executes the specified script file.

Starting FusionShell in Interactive Mode

e Starting Interactive Tcl Mode

To startinteractive Tcl mode, invoke the tool executable without any options. In the
following examples, <tool_exec_file> represents the executable name of the
tool, such asdashrtl.

% <tool_exec_file>

e Starting Interactive Python Mode
To start interactive Python mode, invoke the tool executable with the -pymode
option.

% <tool_exec_file> -pymode

Starting FusionShell in Batch Mode

e Starting Batch Tcl Mode
To start batch Tcl mode, invoke the tool executable with the -files option to
specify the Tcl script file path.

% <tool_exec_file> -files user.tcl

e Starting Batch Python Mode
To start batch Python mode, invoke the tool executable with both the -files
option to specify the Python script file and the -pymode option.

% <tool_exec_file> -files user.py -pymode

FusionShell User Guide Version 2025.12

Exiting FusionShell

e Exiting FusionShell in Tcl Mode
In Tcl mode, use the standard Tcl commands exit or quit to terminate
tool-tcl> exit

e Exiting FusionShell in Tcl Mode
In Python mode, use the Python built-in function exi t () to terminate FusionShell.
tool-py> exit()

FusionShell User Guide Version 2025.12

1-2 Switching Between Tcl Mode and Python Mode

FusionShell allows users to switch seamlessly between Tcl mode and Python mode at
runtime without exiting the shell. After a mode switch command is issued, the
command prompt changes accordingly, making it easy to identify the current operating
mode.

Identifying the Current Command-Line Mode

FusionShell distinguishes Tcl mode and Python mode by the command-line
prompt. A prompt ending with -tcl indicates Tcl mode. A prompt ending with -py
indicates Python mode.

In the following prompt examples, tool represents the name of the DashThru's
EDA tool, such as dashrtl.

e Tcl Mode Prompt
tool-tcl>

e Python Mode Prompt
tool-py>

Switching Between Command-Line Modes

FusionShell supports dynamic switching between Tcl mode and Python mode
without restarting the tool. From Tcl mode, use the pymode command to switch to
Python mode. From Python mode, call the tclmode () function to switch back to
Tcl mode.

Thefollowing example demonstrates switching from Tcl mode to Python mode and
then back to Tcl mode.

After executing pymode, the prompt changes to tool-py, indicating Python mode.
Similarly, after executing tclmode (), the prompt changes to tool-tcl, indicating
Tcl mode.

FusionShell User Guide Version 2025.12

tool-tcl> set a 0
0

TCL Shell

tool-tcl> pymode

tool-py> a

o Python Shell
tool-py> b="1"

tool-py> tclmode()

tool-tcl> puts $b

1 TCL Shell
tool-tcl> puts $a

0

Sharing Variables and Commands Between Modes

Variables and commands are shared between Tcl mode and Python mode in
FusionShell. Variables and commands defined in Tcl mode can be accessed and
used in Python mode. Variables and commands defined in Python mode can
likewise be accessed and used in Tcl mode.

This shared execution environment allows users to switch freely between Tcl and
Python while continuing to use previously defined variables and commands.

For more details on using shared variables and commands across modes, refer to
4 FusionShell Hybrid Mode.

FusionShell User Guide Version 2025.12

2 FusionShell Tcl Mode

FusionShell Tcl mode is developed based on Tcl version 8.5. In addition to supporting
the standard Tcl language, FusionShell provides multiple functional extensions and
enhancements tailored for EDA workflows.

For more information about features available in FusionShell Tcl mode, refer to the
following sections:

e Tcl Language Overview

e Extended Tcl Commands for Object Handling

e Extended Tcl Commands for Procedure Handling

e Debugging Enhancements

e Filelist Enhancements: flist Files

e Tab Key Enhancements

FusionShell User Guide Version 2025.12

2-1 Tcl Language Overview

Tcl, short for Tool Command Language, is an interpreted scripting language created by
John Ousterhout in 1988. It was originally designed as a glue language to connect
different software components. Tcl can be used as an interactive shell, a standalone
script interpreter, or embedded into applications as an extension language.

Tcl supports variables, procedures, and control structures, and provides a powerful
built-in core command set. These commands can be used to perform a wide range of
operations, including file manipulation, string processing, and mathematical
computation.

Tcluses several special characters to represent specific syntax and language constructs.
Commonly used special characters include:

$ Used to reference variables in Tcl scripts.

() Used to group expressions, typically in mathematical expressions or command
evaluation.

[Used to perform command substitution. Commands enclosed in square brackets
are evaluated first, and their results are substituted into the surrounding command.

\ Used forescaping characters and performing character substitution within strings.

Text enclosed in double quotes is treated as a string, with variable and command
substitution applied.

{} Text enclosed in braces is treated as a literal string, and no variable or command
substitution is performed.

* Wildcard character that matches any string, including the empty string.
? Wildcard character that matches any single character.

; Command separator. Used to separate multiple commands on the same line.

Commentcharacter. Any line beginning with this character is treated as a comment
and is not executed.

10

FusionShell User Guide Version 2025.12

2-2 Extended Tcl Commands for Object Handling

In standard Tcl, data is typically managed using lists. However, Tcl lists are essentially
string-based lists, which can be inefficient when handling the large volumes of data
commonly encountered in chip design workflows.

To address these limitations, FusionShell extends Tcl by introducing a set of built-in
object commands. These commands operate on an internal object-based data model
specifically designed to represent design data efficiently. Common object typesinclude
modaules, cells, pins, ports, and parameters.

Compared with native Tcl lists, the FusionShell object-based data model provides the
following advantages:

e Type Awareness
Tcl lists can only store string data, whereas FusionShell objects represent strongly typed
design entities, including both primitive types and reference types.

e Richer Functionality

Tcl lists provide only basic operations such as insertion, deletion, and element access.
In contrast, built-in object commands support advanced operations such as filtering,
searching, sorting, and comparison.

e Improved Performance

Operations on Tcl lists often require full list traversal, which can be inefficient for large
datasets. FusionShell objects are backed by optimized internal data structures and
algorithms, enabling more efficient processing of large-scale design data.

For complex design analysis and manipulation tasks, the object-based commands
provide significantly better performance and flexibility than native Tcl lists.

Creating and Storing Object Handles

FusionShell operates on objects through object handles, similar to how the open
command returns a file descriptor. The get_objects command returns a handle
to the specified objects. Object handles are represented as strings prefixed with
_obj.

11

FusionShell User Guide Version 2025.12

In the following example, the get_objects -type cell command creates an
object handle for all cells matching xreg*. The command prints the names of the
matched objects and returns an object handle _obj1.

Theget_objects -type portcommand createsahandle forthe port named clk,
returning a new object handle _obj2.

tool-tcl> get_objects -type cell xregx
out_reg[0] out_reg[l] out_regl[2]

_obj1

tool-tcl> get_objects -type port clk
clk

_obj2

In the following example, an object handle can be stored in a variable by assigning
the return value of get_objects. Printing the variable directly displays the handle
identifier rather than the object names. To retrieve the object name list, use the

get_object_name command.

tool-tcl> set reg_cell [get_objects -type cell *regx]
_objl

tool-tcl> puts $reg_cell

_obj1

tool-tcl> get_object_name Sreg_cell

out_reg[0] out_reg[l] out_regl[2]

Operating on Object Handles

Operations such as adding, removing, and comparing objects are performed using
FusionShell built-in object commands.

These commands typically follow the naming convention x_objects, such as

add_to_objects and remove_from_objects.

e add_to_objects

Adds existing object elements to a new or existing object handle. In the following
example, add_to_objects creates a new handle containing all elements from
reg_cell plus data_reg. The resulting handle is stored in the variable all_reg.

12

FusionShell User Guide Version 2025.12

tool-tcl> set all_reg [add_to_objects $reg_cell [get_objects -
type cell data_reg]]
_obj3

e compare_objects
Compares two object handles. In the following example, if both handles reference
exactly the same set of objects, the command returns 0; otherwise, it returns 1.

By default, object order is ignored. To perform an order-sensitive comparison, use
the —~order_dependent option.

tool-tcl> compare_objects [get_objects -type port *] $clk_port

1

tool-tcl> compare_objects [get_objects -type port *] [get_objects
-type port *]

0

o filter_objects
Filters objects from an existing handle based on a specified filter expression and
returns a new object handle. In the following example, cells whose names start
with u are selected.

tool-tcl> filter_objects -print [get_objects -type cell *] '"name
=~ yx"

u_9 u_10 u_11

_obj2

e foreach_in_objects

Iterates over all objects referenced by an object handle. Its usage is similar to the
Tcl foreach command. In the following example, all port objects are iterated over,
and the name of each port is printed.

tool-tcl> foreach_in_objects port [get_objects -type port *] {
puts [get_object_name S$port]}

in[0]

in[1]

e index_objects
Retrieves one or more elements from an existing object handle by index, similar to
the Tcl commands lindex and lrange.

13

FusionShell User Guide Version 2025.12

In the following example, the first command retrieves the third element from the
port objects. The second command retrieves the elements at indices 4, 5, and 6.

tool-tcl> index_objects -print [get_objects -type port *] 3
in[3]

_obj2.2

tool-tcl> index_objects -print [get_objects -type port *x] 4 6
in[4] in[5] in[6]

_obj4

e remove_from_objects

Removes specified elements from an existing object handle and returns a new
object handle containing the remaining elements. In the following example, the
clk portis removed from the port objects, and the resulting object handle is stored
in the variable port.

tool-tcl> set port [remove_from_objects [get_objects -type port

*] {clk}]
_obj2

In addition to specifying object names directly, remove_from_objects also
supports removing elements by providing another object handle. In the following
example, a handle for the clk port is first created and then used to remove that
port from the full port collection.

tool-tcl> set clk_port [get_objects -type port clk]

_objl

tool-tcl> set port [remove_from_object [get_objects -type port x*]
$clk_port]

_obj3

e sizeof_objects
Returns the number of elements referenced by the specified object handle. In the
following example, the total number of port objects is printed.

tool-tcl> sizeof_objects [get_objects -type port =*]
36

e sort_objects
Sorts elements in an object handle based on a specified property. In the following
example, objects are sorted by the name property using ascending order,

14

FusionShell User Guide

descending order, and dictionary order, respectively.

tool-tcl> sort_objects -print [get_objects -type cell]
u_10 u_11 u_9S

_obj2

tool-tcl> sort_objects -print -descending [get_objects
cell] name

u_9 u_11 u_10

_obj4

tool-tcl> sort_objects -print -dictionary [get_objects
cell] name

u_9 u_10 u_11

_obj6

Version 2025.12

name

-type

-type

15

FusionShell User Guide Version 2025.12

2-3 Extended Tcl Commands for Procedure Handling

In Tcl, the proc command is used to create user-defined commands. In the following
example, proc creates a new command named add, which can be invoked in the same
way as any other Tcl command.

When the add command is invoked, the arguments 1 and 2 are passed to the local
variables x and y, respectively, and the addition operation is performed.

tool-tcl> proc add {x y} {puts [expr $x+Sy]}
tool-tcl> add 1 2
3

When invoking a procedure, the number of arguments provided must match the
number of parameters defined in the proc declaration. However, if the parameter name
is specified as args, the procedure can accept a variable number of arguments.

In the following example, the add procedure is defined with args and is invoked with
three arguments.

tool-tcl> proc add {args} {puts Sargs}

tool-tcl> add 1 2 3
123

Option-Based Procedure Definition

Most built-in Tcl commands and tool-specific commands support option switches,
which are typically specified using the following syntax:

tool-tcl> command_name -option_name option_value
When defining a user procedure that supports option switches, implementing such
functionality using native Tcl constructs is complex and limited. The primary

limitations include:

e Option switches may be specified in arbitrary order, whereas traditional proc
definitions require fixed positional arguments.

16

FusionShell User Guide Version 2025.12

e Option switches may be specified multiple times, which cannot be properly
handled by standard positional argument parsing.

e Option values cannot be validated, such as enforcing data types or value
ranges.

To address these limitations, FusionShell provides two built-in commands —

parse_proc_args anddefine_proc_constraints — to enable robust definition
and parsing of option-based procedures.

Procedure Definition Using parse_proc_args and define_proc_constraints

For procedures that support option switches, the parse_proc_args command
must be invoked within the procedure body to parse the args argument and assign
option values to variables or arrays.

The define_proc_constraints command is used to define the syntax and
constraints of option switches, including option names, value types, default values,
and usage rules. Since parse_proc_args relies on these constraints to perform
validation and argument assignment, both commands must be used together.

e parse_proc_args -to_vars

The following example illustrates the use of parse_proc_args -to_vars. In this
example, define_proc_constraints defines two option switches, -string and
-1int, with value types string and int, respectively.

The -string option is mandatory, while the -int option has a default value of 1.
A positional (non-switch) argument named bool is also defined.

When the -to_vars option is used, local variables named string, int, and bool
are automatically created within the procedure body and populated with the
parsed values.

proc print {args} {
parse_proc_args -to_vars
puts $string
puts $int
puts Sbool

17

FusionShell User Guide Version 2025.12

define_proc_constraints print \

-info "puts all arguments" \

-default_arg {names=bool} \

-switch_arg "name=string type=string optional=false" \

-switch_arg "name=int type=int default=1"

After the procedure is defined, the command usage can be queried using the -help
option:

tool-tcl> print -help

Usage: print # puts all arguments
-string <string>
[-int <int>]
[<bool>]

If a mandatory option switch is omitted, an error is reported:

tool-tcl> print -int 3
Error: wrong # args: '-string' must be specified for procedure

'print'

Option value type checking is enforced. Since the —int option is defined as an
integer, specifying a non-integer value results in an error:

tool-tcl> print -string haha -int 3.0
Error: wrong # args: expect integer value for '-int' of procedure

'print' but get '3.0'

Option switches and positional arguments may be specified in any order. In the
following examples, the positional argument value true is assigned to bool:

tool-tcl> print true -string haha -int 3
haha

3

true

tool-tcl> print -int 3 -string haha true
haha

3

true

18

FusionShell User Guide Version 2025.12

e parse_proc_args -to_array

The parse_proc_args -to_array option provides functionality similar to -
to_vars, except that parsed values are stored in an array instead of individual
variables.

In the following example, all option and positional argument values are stored in
the array value, indexed by option or argument name.

proc print {args} {
parse_proc_args -to_array value
puts $value(-string)
puts Svalue(-int)
puts Svalue(bool)

define_proc_constraints print \

-info "puts all arguments" \

-default_arg {names=bool} \

-switch_arg "name=string type=string optional=false" \

-switch_arg "name=int type=int default=1"

How to use define_proc_constraints

The define_proc_constraints command specifies the syntax rules and
constraints for an option-based procedure. The available options are listed below.
Note that the ~reset option cannot be combined with any other options.

define_proc_constraints
[-reset]
Reset all constraints associated with the procedure.

[-info <string>]
Specify the ~help descriptive information for the procedure.

[-switch_arg <subswitch_list>]+
Define option switches.
name=<string>

Option switch name.

19

FusionShell User Guide Version 2025.12

[optional=<bool>]

Specify whether the option is optional.
[default=<string>]

Specify the default value.
[enum=<list_of_string>]

Specify a list of allowed values.
[type=<string|string|list|bool|null|int|float>]

Specify the value type.
[min=<int>/<float>]

Specify the minimum value for int or float types.
[max=<int>/<float>]

Specify the maximum value for int or float types.
[multi=<bool>]

Specify whether the option may be specified multiple times.
[exclude_all=<bool>]

Specify whether the option is mutually exclusive with other options.

[-default_arg <subswitch_list>]

Define positional (non-switch) arguments.
names=<list_of_string>

Specify argument names.
[optional=<bool>]

Specify whether the arguments are optional.
[enum=<list_of_string>]

Specify a list of allowed values.
[type=<string|string|list|int|float>]

Specify the argument type.
[min=<int>/<float>]

Specify the minimum value for int or float types.
[max=<int>/<float>]

Specify the maximum value for int or float types.

[-enable_redirect]
Enable output redirection using '>' and '>>",

[-must_include_any <list_of_string>]+
Require that at least one option from the specified list be used.

[-exclusive <list_of_string>]+
Define mutual exclusion rules between option switches.

20

FusionShell User Guide Version 2025.12

Enhanced Procedure Flow Control

When executing a long-running procedure, it is often necessary to guarantee that
certain user-defined operations are performed when the procedure returns.
Typical use cases include printing summary reports, releasing resources, or
cleaning up the execution environment.

FusionShell provides the built-in defer command to support exit-time execution
control within a procedure.

Using defer, users can register commands that are executed automatically when
the procedure terminates. Two execution modes are supported:

1. Unconditional execution on procedure exit

2. Execution only when interrupted by Ctrl+C

e Unconditional Execution on Procedure Exit

In the following example, a procedure performs a long-running loop operation. The
defer command is used to register a command that prints the value of a variable
when the procedure exits.

This behavior is functionally similar to a Tcl8.6 try .. finally ..construct with
additional support for Ctrl+C exit: the deferred command is always executed when
the procedure terminates, independent of the exit path.

proc mcr_loop'{} {

defer {puts "i = Si when exiting proc"}

setiO

while 1 {
incri
if {Si == 5000} {puts Sii}
if {Si == 10000} {return Si}

set var [incr_loop]

21

FusionShell User Guide Version 2025.12

Normal Exit: When the procedure exits normally after reaching the termination
condition, the deferred command is executed before returning the value.

tool-tcl> source defer.tcl
i = 10000 when exiting proc
10000

tool-tcl> puts $var

10000

Ctrl+C Interruption: If the procedure execution is interrupted by pressing Ctrl+C,
the procedure exits immediately and the deferred command is still executed.
However, since the procedure does not complete normally, subsequent set var
command is not executed.

tool-tcl> source defer.tcl

AC i = 3072 when exiting proc

Info: Ctrl1-C interrupt: 'source defer.tcl'. (SHELL-INTRCMD)
tool-tcl> puts $var

Error: can't read "var": no such variable

Runtime Error Exit: If a runtime error occurs during procedure execution triggered
byif {$i == 5000} {puts $ii},the deferred command is executed before the
error is reported.

tool-tcl> source defer.tcl

i = 5000 when exiting proc

Error: can't read "ii": no such variable
tool-tcl> puts $var

Error: can't read "var'": no such variable

e Execution Only on Ctrl+C Interruption
In some scenarios, users may want to execute cleanup or recovery logic only when
a procedure is interrupted, but not on normal completion.

For this purpose, FusionShell provides the defer -intr option. In the following

example, the deferred command is executed only when the procedure is
interrupted by Ctrl+C.

22

FusionShell User Guide Version 2025.12

proc incr_loop {} { .

defer -intr {puts "i = Si when exiting proc"; return $i;}

seti0
while 1 {
incri
if {Si == 10000} {return Si}

setvar [incr_loop]

Normal Exit: When the procedure completes normally, the deferred command is
not executed.

tool-tcl> source defer.tcl
10000

tool-tcl> puts $var

10000

Ctrl+C Interruption with Recovery: When the procedure is interrupted by Ctrl+C,
the deferred command is executed, and control is returned to the script. This
allows the script to continue execution instead of terminating immediately. As a
result, set var is executed successfully after the interruption.

tool-tcl> source defer.tcl

AC Info: Ctrl-C [dnterrupt is handled by 'defer -intr' command.
(SHELL-INTRRECOVER)

i = 4095 when exiting proc

4095

tool-tcl> puts $var

4095

In this mode, defer -intr effectively allows the procedure to intercept and
recover from Ctrl+C interruptions, enabling customized interrupt handling and
improving script robustness.

For detailed information about Ctrl+C interrupt behavior, refer to the section
Ctrl+C Interrupt Handling.

23

FusionShell User Guide Version 2025.12

2-4 Debugging Enhancements

To support advanced debugging requirements for user scripts, FusionShell extends
native Tcl debugging functionality with the following enhancements:

Ctrl+C Interrupt Handling
Enhanced Error Reporting

Command Tracing

0OS Command Execution

Ctrl+C Interrupt Handling

FusionShell extends Ctrl+C interrupt handling to allow real-time termination of
command execution. Interrupt handling is supported for:

e Native Tcl commands

e User-defined procedures

e Loop constructs such as foreach, for, and while

Pressing Ctrl+C during loop execution immediately terminates the loop:
tool-tcl> while 1 {}

e

Info: Ctrl-C dinterrupt: 'while 1 {}'. (SHELL-INTRCMD)
Ctrl+C can also interrupt long-running Tcl commands:

tool-tcl> after 100000000

e

Info: Ctrl-C dinterrupt: 'after 100000000'. (SHELL-INTRCMD)
Pressing Ctrl+C twice while in command input mode exits FusionShell:
tool-tcl>

Info: one more Ctrl-C to exit. (SHELL-INTR)

tool-tcl>

Info: thank you for using ...

24

FusionShell User Guide Version 2025.12

When entering multi-line command mode using {}, Ctrl+C cancels the current
command input:

tool-tcl> if {$a == 0} {
Info: Ctrl-C dinterrupt: 'if {$Sa == 0} {'. (SHELL-INTRCMD)

tool-tcl>

Enhanced Error Reporting

Script execution errors can be diagnosed using the error_info command, which
reports detailed error location information.

The following example shows error reporting for an error occurring in the
interactive shell. The error_info command reports the shell line number where
the error occurred.

tool-tcl> set a
Error: can't read "a": no such variable

tool-tcl> error_info

<shell> line 1:

set a

When executing scripts using the source command, error_info reports both:
e Theshell line that invoked source
e The line number within the script file where the error occurred

tool-tcl> source user.tcl
Error: can't read "a": no such variable

tool-tcl> error_info

<shell> line 1:
source user.tcl
"user.tcl", line 1:

set a

25

FusionShell User Guide Version 2025.12

Command Tracing

In native Tcl behavior, the source command prints only the command output
results, not the commands themselves. This behavior makes script debugging
more difficult.

FusionShell enhances the source command by adding the -echo option. When
this option is specified, both the executed commands and their outputs are
displayed. Commands are prefixed with <tcl> to indicate that they represent
command statements.

Example
Assume the script file user. tcl contains the following commands:
set a 0
set b1

Native Tcl behavior:
tool-tcl> source user.tcl
0

1

FusionShell enhanced behavior:
tool-tcl> source -echo user.tcl
<tcl> set a 0

0]

<tcl> set b 1

1

0OS Command Execution

FusionShell supports executing OS commands using two methods.

e Executing OS Commands Using exec
OS commands can be executed using the Tcl exec command:

tool-tcl> exec gvim user.tcl

tool-tcl> exec mkdir aa

26

FusionShell User Guide Version 2025.12

The exec command supports different execution modes. When -shellmode is
specified, shell wildcard expansion is supported:

tool-tcl> exec -shellmode 1ls *.log

When -tty is specified, the command runsin an interactive terminal mode. All user
inputs are processed in real time and are not recorded in the log. This mode is
typically used for text-based interactive applications such as editors:

tool-tcl> exec -tty vim

e Executing OS Commands Directly

FusionShell also supports direct execution of OS commands from the command
line, provided the command is accessible in the system environment (i.e.,
discoverable via which):

tool-tcl> mkdir aa
tool-tcl> 1s
aa

tool-tcl> cd aa

27

FusionShell User Guide Version 2025.12

2-5 Filelist Enhancements: flist Files

In EDA tools, filelists are commonly used to describe HDL source files. Such filelists
typically contain HDL file paths, compilation options, and comments.

FusionShell extends the conventional filelist concept and introduces an enhanced list
fileformat named flist. While flist reuses the general syntax structure of traditional
filelists, it can be applied to any command or variable configuration, rather than being
limited to HDL compilation.

An flist file is a special file type in FusionShell. In practical usage, users frequently
encounter scenarios where lists become excessively long, making scripts difficult to
read and maintain. Typical examples include:

e HDLfile lists passed to analyze

e Libraryfile lists passed to read_1libs

e Path lists specified by set search_path

Allsuch lists can be placed into an flist file and converted into a standard Tcl list using
the read_flist command, which can then be directly passed to commands or
variables.

e flist Syntax Rules
Elementsin an flist file may be separated by spaces or newlines. For example:

-verilog top.v sub.v

is equivalent to:
-verilog
top.v

sub.v
To use an flist file, the read_flist command must be invoked. The command
expands the flist content into a regular list, which can be directly embedded into

commands or variable assignments.

The flist mechanism supports nested flist inclusion, standard comments and
special comments.

28

FusionShell User Guide Version 2025.12

e Standard Comment in flist file

The following standard comment styles are supported:
Single-line comments: #, //

Multi-line comments: /* ... */

Example:
This isa comment /* This is a comment linel
-frtl2.list Thisis a comment line2
// Thisis a comment */
/design/rtl/top.v //This is a comment /design/rtl/define.v
/design/rtl/sub.v/* Thisisa comment*/

Using the command:
analyze -hdl_type verilog [read_flist rtll.list]

is equivalent to executing:
analyze -hdl_type verilog "/design/rtl/define.v /design/rtl/top.v
/design/rtl/sub.v"

e Special Comment in flist file

FusionShell introduces a special comment syntax that allows commented content to
be conditionally included during f1ist expansion. A special comment must follow the
format:

// dashthru <flist_items>

Although <flist_items> appear within a comment, read_flist recognizes the
keyword dashthru and includes the commented elements in the expanded list. This
mechanism enables flexible modification of filelist behavior without altering the
original list structure, ensuring compatibility with third-party tools.

Example:
/design/rtl/define.v /design/rtl/define.v
/design/rtl/top.v // dashthru +define+MACRO
/design/rtl/sub.v /design/rtl/top.v

/design/rtl/sub.v
// dashthru /design/rtl/mod.v

29

FusionShell User Guide Version 2025.12

The modified filelist new.1st remains fully compatible with third-party tools and
behaves identically to the original list old. lst. However, in FusionShell, executing:
analyze -hdl_type verilog [read_flist new.list]

is equivalent to:
analyze -hdl_type verilog "/design/rtl/define.v +define+MACRO
/design/rtl/top.v /design/rtl/sub.v /design/rtl/mod.v"

e Typical Usage Scenarios
The flist mechanism allows users to externalize long command arguments or
variable values into files, significantly improving script readability and maintainability.

The following sections demonstrate four typical usage scenarios:
Using flist to Specify Path Lists

Using flist to Specify HDL Filelists
Using flist to Specify Library Filelists

Using flist to Specify Path Lists

The flist mechanism can be used to define and extend the search_path variable
in a structured and maintainable way. By externalizing path definitions into flist
files, long and frequently modified path lists can be managed more cleanly.

// Search Path: search.|st // Search Path: libsearch.lst
Ssearch_path /design/lib/mem
/design/rtl /design/lib/pad
/design/rtl/top

// dashthru -f libsearch.Ist

In the script, using the following command:
set search_path [read_flist search.lst]

is equivalent to executing:

set search_path "$search_path /design/rtl design/rtl/top
/design/1lib/mem /design/lib/pad"

30

FusionShell User Guide Version 2025.12

A regular Tcl list and an flist expansion can be freely mixed within the same
variable assignment. For example:

set search_path "$search_path /design/rtl design/rtl/top
[read_flist libsearch.lst]"

This is equivalent to:

set search_path "$search_path /design/rtl design/rtl/top
/design/lib/mem /design/lib/pad"

Using flist to Specify HDL Filelists

The flist mechanism can be used to describe complex HDL filelists, including
compiler directives, include paths, and mixed-language source files. This approach
significantly improves the readability and maintainability of HDL compilation
scripts, especially for large designs.

// RTL1 List: rtl1.Ist // RTL2 List: rtl2.1st

// dashthru +define+SIM -verilog /design/rtl/subl.v
+incdir+/design/rtl -sverilog /design/rtl/sub2.sv
/design/rtl/top.v

/design/rtl/sub_top.v

-frtl2.lst

In FusionShell, executing:
analyze -hdl_type verilog [read_flist rtll.lst]

is equivalent to executing:

analyze -hdl_type verilog "+define+SIM +incdir+/design/rtl
/design/rtl/top.v /design/rtl/sub_top.v -verilog
/design/rtl/subl.v -sverilog /design/rtl/sub2.sv"

Regular Tcl lists and flist expansions can be freely combined. For example:
analyze -hdl_type verilog "+incdir+/design [read_flist rtll.1lst]

/design/rtl/sub3.sv"

This is equivalent to:

31

FusionShell User Guide Version 2025.12

analyze -hdl_type verilog "+incdir+/design +define+SIM
+incdir+/design/rtl /design/rtl/top.v /design/rtl/sub_top.v -
verilog /design/rtl/subl.v -sverilog /design/rtl/sub2.sv
/design/rtl/sub3.sv"

When multiple flist files are required, they can be specified simultaneously in a

single read_flist invocation. For example:
analyze -hdl_type verilog [read_flist rtll.lst rtl2.1lst]

Using flist to Specify Library Filelists

The flist mechanism can also be applied to library filelists used by the
read_libs command. By externalizing library paths into flist files, users can
manage large and frequently changing library sets in a modular and reusable

manner.
// RTL1 List: lib1.lst // RTL2 List: lib2.lst
/design/lib/pad.lib /design/lib/mem32x32.lib
// dashthru /design/lib/pll.lib /design/lib/mem32x64.lib
-flib2.lst

In FusionShell, executing:
read_Tlibs [read_flist rtll.1lst]

is equivalent to executing:
read_1libs /design/lib/pad.lib /design/lib/pll.lib
/design/1lib/mem32x32.1ib /design/lib/mem32x64.11b

Regular Tcl lists and f1list expansions can be freely combined. For example:
read_libs "[read_flist libl.lst] /design/lib/mem64x64.1ib"

This is equivalent to:

read_1libs "/design/lib/pad.lib /design/lib/pll.lib
/design/1lib/mem32x32.1ib /design/lib/mem32x64.11b
/design/1lib/mem64x64.1ib"

32

FusionShell User Guide Version 2025.12

When multiple flist files are required, they can be specified together in a single
read_flist command. For example:
read_Tlibs [read_flist 1libl.lst 1lib2.1lst]

33

FusionShell User Guide Version 2025.12

2-6 Tab Key Enhancements

In conventional Tcl command-line environments, the Tab key is typically limited to
command name completion and listing, and cannot be applied to subcommands or
argument values.

FusionShell extends the Tab key functionality to provide comprehensive completion
and listing support not only for commands, but also for subcommands, variables,
command options, and valid option values. This enhancement enables more efficient
and flexible command-line interaction.

Command Completion and Listing

When anincomplete command is entered at the command prompt and the Tab key
is pressed, FusionShell attempts to automatically complete the command name. If
multiple commands match the current input, FusionShell displays a list of all
commands that begin with the specified prefix.

Command completion and listing apply to both native Tcl commands and user-
defined procedures.

In the example below, entering ge and pressing Tab does not result in a unique
match, since multiple commands start with get. FusionShell therefore completes
the input to get. Pressing Tab again displays all matching commands.

tool-tcl> ge<tab>
tool-tcl> get<tab>

get_cells get_functions get_modules get_nets ...

Command completion and listing are also supported within command
substitutions []. As shown below, Tab can be used in the same way inside brackets.

tool-tcl> puts [ge<tab>

tool-tcl> puts [get<tab>

get_cells get_functions get_modules get_nets ...

34

FusionShell User Guide Version 2025.12

Subcommand Completion and Listing

Commands with subcommands (such as string and file) also support Tab-
based completion and listing for their subcommands. The behavior is identical to
that of command completion and is supported both at the command prompt and
within command substitutions.

Examples of subcommand completion at the command prompt and inside
brackets are shown below.

tool-tcl> string tr<tab>
tool-tcl> string trim<tab>
trim trimleft trimright

tool-tcl> puts [string tr<tab>

tool-tcl> puts [string trim<tab>
trim trimleft trimright

Command Option Completion and Listing

Command options can also be completed and listed using the Tab key. This
functionality is consistent with command completion behavior and is supported
both at the command prompt and within command substitutions.

Examples of option completion and listing are shown below.

tool-tcl> get_objects -<tab>

-filter -hier -of -quiet -sorted -type
tool-tcl> get_objects -ty<tab>

tool-tcl> get_objects -type

tool-tcl> puts [get_objects -<tab>

-filter -hier -of -quiet -sorted -type
tool-tcl> puts [get_objects -ty<tab>

tool-tcl> puts [get_objects -type

In addition, when an option accepts an enumerated set of values, the Tab key can
be used to complete and display all valid enumeration values. The following

35

FusionShell User Guide Version 2025.12

example shows all supported values for the -type option.

tool-tcl> get_objects -type <tab>

cell floorplan interface lef_pin lef_tech lib_cell
module package pin task class function
lef_cell lef_site lib lib_pin net parameter
port text_macro

Variable Completion and Listing

Variable completion and listing follow the same principles as command
completion. When an incomplete variable name is entered and the Tab key is
pressed, FusionShell attempts to complete the variable name. If multiple variables
match the prefix, all matching variable names are displayed.

Variable completion and listing apply to both tool-defined variables and user-
defined variables, and support both variable definition and variable reference
contexts.

In the example below, multiple variables begin with hdl_, so FusionShell
completes the prefix and then displays all matching variables.

tool-tcl> set hd<tab>

tool-tcl> set hdl_<tab>

hdl_allow_static_task hdl_default_ext hdl_default_std
hdl_inst_array_pre_postfix hdl_max_1limit

hd1l_soc_integration_mode hdl_warn_threshold

Both set and unset commands support Tab-based completion for user-defined
variables, as shown below.

tool-tcl> set aa 0
tool-tcl> set aaa 0
tool-tcl> set a<tab>
tool-tcl> set aa<tab>
aa aaa

tool-tcl> unset a<tab>
tool-tcl> unset aa<tab>

aa aaa

36

FusionShell User Guide Version 2025.12

Variable references using the $ prefix also support completion and listing.

tool-tcl> puts $Shd<tab>

tool-tcl> puts $hdl_<tab>

hdl_allow_static_task hdl_default_ext hdl_default_std
hdl_inst_array_pre_postfix hdl_max_limit

hdl_soc_integration_mode hdl_warn_threshold

File Path Completion and Listing

The Tab key can also be used to complete and list file paths. When entering a file
name or directory path, pressing Tab completes the path or displays all matching
files and directories.

The example below shows file name completion.

tool-tcl> open dash<tab>

tool-tcl> open dashrtl.<tab>

dashrtl.cmd dashrtl.log

The following example lists files and directories under the .. /tc1/ path.

tool-tcl> open ../tcl/<tab>

tc work script

37

FusionShell User Guide Version 2025.12

3 FusionShell Python Mode

FusionShell Python mode is fully compatible with the official CPython release,
supporting the complete Python syntax and functionality. Users can freely leverage
third-party Python libraries to perform secondary development. In addition, Python
mode provides built-in functions corresponding to Tcl commands, allowing users to
directly invoke EDA tool operations within the Python environment.

For more information about the capabilities of FusionShell Python mode, refer to the
following sections:

e Python Language Overview

e Python Version

e Importing Third-Party Python Libraries

e Invoking Built-in Tool Functions and Variables

38

FusionShell User Guide Version 2025.12

3-1 Python Language Overview

Python is a widely adopted scripting language known for its design philosophy of
elegance, clarity, and simplicity. Its concise and readable syntax enables developers to
accomplish more with fewer lines of code. Python supports multiple programming
paradigms, including procedural, object-oriented, and functional programming.

Python is extensively used in a wide range of domains, such as web development, data
analysis, artificial intelligence, scientific computing, and scripting.

Key characteristics of Python include:

e Interpreted Language
Pythonisaninterpreted language, meaning that code is executed line by line at runtime.
This allows rapid development, testing, and debugging.

e Dynamic Typing

Python uses dynamic typing, so variable types do not need to be explicitly declared.
While this increases flexibility, users should be aware of potential type-related runtime
errors.

e Object-Oriented Support
Python supports object-oriented programming, including classes, objects, inheritance,
and polymorphism.

e Extensive Standard and Third-Party Libraries

Python provides a rich standard library and a vast ecosystem of third-party libraries,
enabling efficient implementation of a wide variety of applications, such as data
analysis, machine learning, and visualization.

e Cross-Platform Support
Python can run on multiple operating systems.

39

FusionShell User Guide Version 2025.12

3-2 Python Version

FusionShell Python mode is based on CPython version 3.8.20. The Python version
information can be queried as shown below:

tool-py> import sys

tool-py> print(sys.version)

3.8.20 (default, Oct 11 2024, 10:13:03)
[GCC 9.3.1 20200408 (Red Hat 9.3.1-2)]

3-3 Importing Third-Party Python Libraries

Integrating Python with EDA tools provides significant advantages in multiple
dimensions, including data analysis, automation, and ecosystem support. FusionShell
Python mode enables these benefits by allowing direct use of Python's extensive third-
party library ecosystem. Key advantages include:

e Powerful Data Analysis and Visualization

Python offers robust data processing and visualization libraries such as NumPy, pandas,
and matplotlib. These libraries can be combined with EDA tool outputs to enable in-
depth analysis and intuitive visualization of design data.

e Automation

Python scripting allows users to automate many EDA workflows, including simulation,
layout verification, and performance analysis. This improves efficiency and reduces the
risk of human error.

e Community Ecosystem

Python has a large and active developer community, providing abundant resources
such as tutorials, libraries, and example code. Users can easily find solutions and
benefit from shared experience.

In FusionShell Python mode, importing third-party libraries follows the same syntax
and behavior as standard Python. Examples are shown below.

40

FusionShell User Guide

Import an entire module:

tool-py> import math

Import a module with an alias:

tool-py> dimport numpy as np

Import specific objects from a module:

tool-py> from datetime import date

Import all objects from a module:

tool-py> from math import x

Version 2025.12

41

FusionShell User Guide Version 2025.12

3-4 Invoking Built-in Tool Functions and Variables

Similar to Tcl mode, where Tcl commands and variables are used to control and
configure the tool, Python mode provides Python functions and variables for tool
interaction.

Most commands and variables in Tcl mode have corresponding representations in
Python mode. An example of the naming correspondence is shown below.

Mode Built-in Tool Commands (Functions) | Built-in Tool Variables
Tcl analyze Shdl_default_std
Python tcl.proc.analyze hdl_default_std

Python Built-in Functions

Python built-in functions correspond directly to Tcl built-in commands, with a one-
to-one name mapping. These functions are provided in the tcl.proc namespace.

The Tcl commands puts and string correspond to the Python functions
tcl.proc.puts and tcl.proc.string. In the below example, tcl.proc.puts
prints the string haha and returns an empty string, while tcl.proc.stringreturns
theresultas astring '4'.

tool-py> tcl.proc.puts('haha')

haha

tool-py> tcl.proc.string('length', 'haha')
|4|

The following example demonstrates how to read RTL and execute EDA operations
in Python mode, equivalent to invoking analyze, read_flist, and elaborate
commands in Tcl mode.

tool-py> tcl.proc.analyze('-hdl_type', 'verilog',

tcl.proc.read_flist('rtl.list'))
tool-py> tcl.proc.elaborate('top')

42

FusionShell User Guide Version 2025.12

Python Built-in Variables

Python built-in tool variables share the same names as their Tcl counterparts and
can be accessed directly, as shown below:

tool-py> search_path

However, directly assigning values to these variables using standard Python
assignment syntax does not apply the change to the tool environment, even
though the variable value appears to be updated:

tool-py> search_path = '. /design/rtl'
tool-py> search_path
'". /design/rtl'

To correctly modify tool variables in Python mode, users must use

tcl.proc.set_tool_var or tcl.proc.set, as shown below:

tool-py> tcl.proc.set_tool_var('search_path','. /design/rtl'")
'". /design/rtl'

tool-py> search_path

". /design/rtl'

tool-py> tcl.proc.set('search_path','. /design/lib'")

'". /design/lib'

tool-py> search_path

'". /design/lib'

43

FusionShell User Guide Version 2025.12

4 FusionShell Hybrid Mode

FusionShell Hybrid Mode is not a standalone command-line mode. Instead, it refers to
the capability of using Tcl and Python statements together within the same script. As
described previously, FusionShell allows seamless and real-time switching between Tcl
mode and Python mode without exiting the shell. For more information, refer to 1-2
Switching Between Tcl Mode and Python Mode.

This chapter describes how to use FusionShell Hybrid Mode. The following sections are
covered:

e Using Tcl Commands and Variables in Python Mode

e Using Python Functions and Variables in Tcl Mode

e Tcl+Python Hybrid Script Examples

44

FusionShell User Guide Version 2025.12

4-1 Using Tcl Commands and Variables in Python Mode

Tcl commands and variables can be classified into two categories: built-in tool
commands/variables and user-defined commands/variables.

The usage of built-in Tcl commands and variables in Python mode has been described
in 3-4 Invoking Built-in Tool Functions and Variables. This section focuses on the
usage of user-defined Tcl commands and variables in Python mode.

Using User-Defined Tcl Commands in Python Mode

Similar to built-in Tcl commands, user-defined Tcl procedures are exposed in the
tcl.proc namespace when operating in Python mode.

The following example illustrates this behavior. A Tcl procedure named add is first
defined in Tcl mode. After switching to Python mode using the pymode command,
the procedure can be invoked directly through tcl.proc.add.

tool-tcl> proc add {prefix a b} {return "Sprefix: [expr $a+$b]"}
tool-tcl> pymode

tool-py> tcl.proc.add('result', '1', '2")

result: 3

Using User-Defined Tcl Variables in Python Mode

In Python mode, user-defined Tcl variables can be accessed and modified directly.
As shown in the following example, Tcl variable values — regardless of whether
they represent integers, booleans, or strings — are converted to string type when
accessed from Python.

tool-tcl> set vl 123
123

tool-tcl> set v2 true
true

tool-tcl> set v3 "hello world"

45

FusionShell User Guide Version 2025.12

hello world
tool-tcl> pymode
tool-py> v1
'123"

tool-py> v2
"true'

tool-py> v3
"hello world'

Variables are shared across Python mode and Tcl mode. Therefore, modifying a
variable in Python mode will also update its value in Tcl mode, as demonstrated
below.

tool-py> v1='456"
tool-py> v2="'false'
tool-py> v3='hello'
tool-py> tclmode()
tool-tcl> puts $vl
456

tool-tcl> puts $v2
false

tool-tcl> puts $v3
hello

46

FusionShell User Guide Version 2025.12

4-2 Using Python Functions and Variables in Tcl Mode

Python mode and Tcl mode share the same execution environment. As a result, Python
functions and variables defined in Python mode can be accessed directly from Tcl mode.

This section describes how to use user-defined Python functions and variables in Tcl
mode.

Using User-Defined Python Functions in Tcl Mode

To invoke a user-defined Python function as a Tcl command, the function must be
defined within the tcl.proc namespace. If a Python function is defined at the top
level (outside of tcl.proc), it must be invoked using the Tcl call command.

The following example demonstrates invoking a Python function using call.

tool-py> def add(prefix,a,b): return f"{prefix}: {int(a)+int(b)}"
tool-py> tclmode()

tool-tcl> call add result 1 2

result: 3

Alternatively, a Python function can be explicitly registered as a Tcl command by
adding it to the tcl._procs dictionary, as shown below.

tool-py> def add(prefix,a,b): return f"{prefix}: {int(a)+int(b)}"
tool-py> tcl._procs['add'] = add

tool-py> tclmode()

tool-tcl> add result 1 2

Warning: proc constraint not found for "add". (TCL-UNCONSTR)
result: 3

Using User-Defined Python Variables in Tcl Mode

User-defined Python variables can be accessed and modified directly in Tcl mode.
However, to be accessible from Tcl mode, Python variables must be defined as

47

FusionShell User Guide Version 2025.12

strings in Python mode.

If a Python variableis defined using a non-string data type (for example, an integer),
referencing itin Tcl mode will result in an error, as shown below.

tool-py> v1=123

tool-py> tclmode()

tool-tcl> S$vl

TypeError: startswith first arg must be str or a tuple of str,

not int
The correct usage is shown in the following example:

tool-py> v1='123"
tool-py> v2="true'
tool-py> v3='hello world'
tool-py> tclmode()
tool-tcl> puts $vl

123

tool-tcl> puts $v2

true

tool-tcl> puts $v3

hello world

Variables are shared across Python mode and Tcl mode. Therefore, modifying a
variable in Tcl mode will also update its value in Python mode, as demonstrated

below.

tool-tcl> set vl 456

456

tool-tcl> set v2 false
false

tool-tcl> set v3 hello
hello

tool-tcl> pymode
tool-py> vl

'456"

tool-py> v2

'false'

tool-py> v3

"hello'

48

FusionShell User Guide Version 2025.12

4-3 Tcl+Python Hybrid Script Examples

Tcland Python hybrid scripts can be executed in both interactive (command-line) mode
and batch (script) mode.

Interactive Mode Example

When starting FusionShell in interactive mode, the language mode (Tcl or Python)
must match the first language used in the hybrid script. If the script begins with Tcl
statements, FusionShell must be launched in Tcl mode. If the script begins with
Python statements, FusionShell must be launched in Python mode.

In the following example, the hybrid script begins with Python statements.
Therefore, FusionShell is launched with the -pymode option to enter Python mode
initially.

% <tool_exec_file> -pymode
tool-py> v1='123"
tool-py> v2="true'
tool-py> v3='hello world'
tool-py> tclmode()
tool-tcl> puts $vil

123

tool-tcl> puts $v2

true

tool-tcl> puts $v3

hello world

Batch Mode Example

In batch mode, the language mode (Tcl or Python) is also determined by the first
language used in the hybrid script. If the script starts with Tcl statements,
FusionShell must be launched in Tcl mode. If the script starts with Python
statements, FusionShell must be launched in Python mode.

49

FusionShell User Guide

Version 2025.12

In the following example, the hybrid script file mix_tcl_py.scr begins with Tcl
statements. Therefore, FusionShell is launched without the -pymode option to

enter Tcl mode initially.

Start With Tcl Script
setvl 123

setv2 true

set v3 "hello world"
pymode

Switch To Python Script
v1="'456'

v2="false'

v3='hello'

tclmode()

Switch To Tcl Script
puts Sv1
puts $v2
puts $v3

mix_tcl_py.scr

% <tool_exec_file> -f mix_tcl_py.scr
Start With Tcl Script

<tcl> set vl 123

123

<tcl> set v2 true

true

<tcl> set v3 "hello world"

hello world

<tcl> pymode

Switch To Python Script
<py> v1='456"

<py> v2='false'

<py> v3='hello'

<py> tclmode()

Switch To Tcl Script
<tcl> puts $vi
456

50

FusionShell User Guide Version 2025.12

<tcl> puts $v2
false
<tcl> puts $v3
Hello

51

FusionShell User Guide

Version 2025.12

Appendix A Common Tcl Commands

This appendix lists the common Tcl8.5 commands supported by FusionShell, including

their available subcommands and support status.

Command Subcommand Support Status
after -- Supported
cancel Planned
idle Planned
info Planned
append -- Supported
apply -- Supported
array anymore Supported
donesearch Supported
exists Supported
get Supported
names Supported
nextelement Supported
set Supported
size Supported
startsearch Supported
statistics Supported
unset Supported
bgerror -- Planned
binary format Planned
scan Planned
break - Supported
catch - Supported
cd - Supported
chan blocked Planned
close Supported
configure Planned

52

FusionShell User Guide

Version 2025.12

copy Planned
create Planned
eof Supported
event Planned
flush Supported
gets Supported
names Supported
pending Planned
postevent Planned
puts Supported
read Supported
seek Supported
tell Supported
truncate Planned
clock add Planned
clicks Planned
format Planned
microseconds Planned
milliseconds Planned
scan Planned
seconds Planned
close - Supported
concat -- Supported
continue -- Supported
dde servername Planned
execute Planned
poke Planned
request Planned
services Planned
eval Planned
dict append Supported
create Supported
exists Supported
filter Supported
for Supported
get Supported
incr Supported
info Supported
keys Supported

53

FusionShell User Guide

Version 2025.12

lappend Supported
merge Supported
remove Supported
replace Supported
set Supported
size Supported
unset Supported
update Supported
values Supported
with Supported
encoding convertfrom Unsupported
convertto Unsupported
dirs Unsupported
names Unsupported
system Unsupported
eof -- Supported
error - Supported
eval - Supported
exec - Supported
exit - Supported
expr - Supported
fblocked -- Planned
fconfigure -- Planned
fcopy -- Planned
file atime Planned
attributes Planned
channels Supported
copy Planned
delete Planned
dirname Supported
executable Supported
exists Supported
extension Supported
isdirectory Supported
isfile Supported
join Supported
link Planned
[stat Planned
mkdir Planned

54

FusionShell User Guide

Version 2025.12

mtime Planned
nativename Planned
normalize Planned
owned Supported
pathtype Supported
readable Supported
readlink Supported
rename Planned
rootname Supported
separator Supported
size Supported
split Planned
stat Planned
system Planned
tail Supported
type Supported
volumes Supported
writable Supported
fileevent -- Planned
flush -- Supported
for - Supported
foreach -- Supported
format -- Supported
gets -- Supported
glob -- Supported
global -- Supported
history - Supported
add Planned
change Planned
clear Supported
event Planned
info Planned
keep Supported
nextid Planned
redo Planned
if -- Supported
incr -- Supported
info args Planned
body Planned

55

FusionShell User Guide

Version 2025.12

cmdcount Planned
commands Supported
complete Planned
default Planned
exists Supported
frame Planned
functions Planned
globals Planned
hostname Supported
level Planned
library Planned
loaded Planned
locals Planned
nameofexecutable Supported
patchlevel Planned
procs Planned
script Planned
sharedlibextension Planned
tclversion Supported
vars Planned
interp alias Planned
aliases Planned
bgerror Planned
create Planned
debug Planned
delete Planned
eval Planned
exists Planned
expose Planned
hide Planned
hidden Planned
invokehidden Planned
limit Planned
issafe Planned
marktrusted Planned
recursionlimit Planned
share Planned
slaves Planned
target Planned

56

FusionShell User Guide

Version 2025.12

transfer Planned
join -- Supported
lappend -- Supported
lassign - Supported
lindex - Supported
linsert - Supported
list - Supported
llength - Supported
Imap - Supported
load -- Supported
lrange -- Supported
lrepeat -- Supported
lreplace -- Supported
lreverse -- Supported
Isearch -- Supported
lset - Supported
lsort - Supported
memory active Unsupported
break_on_malloc Unsupported
info Unsupported
init Unsupported
objs Unsupported
onexit Unsupported
tag Unsupported
trace Unsupported
trace_on_at_malloc Unsupported
validate Unsupported
namespace children Supported
code Planned
current Supported
delete Planned
ensemble Planned
eval Supported
exists Supported
export Planned
forget Planned
import Planned
inscope Planned
origin Planned

57

FusionShell User Guide

Version 2025.12

parent Supported
path Planned
qualifiers Supported
tail Supported
upvar Planned
unknown Planned
which Planned
open - Supported
package forget Unsupported
ifneeded Unsupported
names Unsupported
prefer Unsupported
present Unsupported
provide Unsupported
require Unsupported
unknown Unsupported
vcompare Unsupported
versions Unsupported
vsatisfiers Unsupported
parray - Planned
pid - Supported
pkg_mkindex | -- Planned
proc -- Supported
puts - Supported
pwd -- Supported
re_syntax -- Planned
read -- Supported
regexp - Supported
regsub - Supported
rename - Supported
return - Supported
scan - Supported
seek - Supported
set -- Supported
socket -- Planned
source -- Supported
split -- Supported
string compare Supported
equal Supported

58

FusionShell User Guide

Version 2025.12

first Supported
index Supported
is Supported
last Supported
length Supported
map Supported
match Supported
range Supported
repeat Supported
replace Supported
reverse Supported
tolower Supported
totitle Supported
toupper Supported
trim Supported
trimleft Supported
trimright Supported
bytelength Supported
wordend Unsupported
wordstart Unsupported
subst - Supported
switch - Supported
tell -- Supported
time - Supported
trace add Planned
remove Planned
info Planned
variable Planned
vdelete Planned
vinfo Planned
unknown - Supported
unload -- Planned
unset - Supported
update -- Planned
uplevel -- Supported
upvar -- Supported
variable -- Supported
vwait -- Planned
while -- Supported

59

FusionShell User Guide Version 2025.12

Appendix B Additional Tool Commands

This appendix lists additional built-in tool commands provided by FusionShell. These
commands extend standard Tcl functionality and are categorized by command type.

Command Category Tool Command Support Status
define_proc_constraints Supported
Procedure Handling parse_proc_args Supported
defer Supported
add_to_objects Supported
compare_objects Supported
filter_objects Supported
foreach_in_objects Supported
get_objects Supported
Object Handling get_object_name Supported
get_object_type Supported
index_objects Supported
remove_from_objects Supported
sizeof_objects Supported
sort_objects Supported
alias Supported
apropos Supported
assert Supported
call Supported
Others help Supported
man Supported
plugin Supported
pymode Supported
unalias Supported

60

	Copyright Notice
	Contents
	1 FusionShell Overview
	1-1 Starting and Exiting FusionShell
	Starting FusionShell in Interactive Mode
	Starting FusionShell in Batch Mode
	Exiting FusionShell

	1-2 Switching Between Tcl Mode and Python Mode
	Identifying the Current Command-Line Mode
	Switching Between Command-Line Modes
	Sharing Variables and Commands Between Modes

	2 FusionShell Tcl Mode
	2-1 Tcl Language Overview
	2-2 Extended Tcl Commands for Object Handling
	Creating and Storing Object Handles
	Operating on Object Handles

	2-3 Extended Tcl Commands for Procedure Handling
	Option-Based Procedure Definition
	Procedure Definition Using parse_proc_args and define_proc_constraints
	How to use define_proc_constraints
	Enhanced Procedure Flow Control

	2-4 Debugging Enhancements
	Ctrl+C Interrupt Handling
	Enhanced Error Reporting
	Command Tracing
	OS Command Execution

	2-5 Filelist Enhancements: flist Files
	Using flist to Specify Path Lists
	Using flist to Specify HDL Filelists
	Using flist to Specify Library Filelists

	2-6 Tab Key Enhancements
	Command Completion and Listing
	Subcommand Completion and Listing
	Command Option Completion and Listing
	Variable Completion and Listing
	File Path Completion and Listing

	3 FusionShell Python Mode
	3-1 Python Language Overview
	3-2 Python Version
	3-3 Importing Third-Party Python Libraries
	3-4 Invoking Built-in Tool Functions and Variables
	Python Built-in Functions
	Python Built-in Variables

	4 FusionShell Hybrid Mode
	4-1 Using Tcl Commands and Variables in Python Mode
	Using User-Defined Tcl Commands in Python Mode
	Using User-Defined Tcl Variables in Python Mode

	4-2 Using Python Functions and Variables in Tcl Mode
	Using User-Defined Python Functions in Tcl Mode
	Using User-Defined Python Variables in Tcl Mode

	4-3 Tcl+Python Hybrid Script Examples
	Interactive Mode Example
	Batch Mode Example

	Appendix A Common Tcl Commands
	Appendix B Additional Tool Commands

