DashRTL User Guide

Version 2025.06

DashThru

DashRTL User Guide Version 2025.06

Copyright Notice

Copyright © 2024-2025 DashThru Technology, Ltd. All Rights Reserved.

DashThru is the trademark of DashThru Technology, Ltd. All content, features, and
functionality of the DashRTL product, including but not limited to text, graphics, logos,
images, software, and any other materials, are protected by copyright, trademark, and
other intellectual property laws.

You may not reproduce, distribute, modify, transmit, display, perform, or otherwise use
any content or materials from DashThru or DashRTL without the express written
consent of DashThru Technology, except as permitted by applicable law. Unauthorized
use of any content or trademarks may result in legal action.

DashThru Technology reserves the right to modify, update, or discontinue any part of

DashRTL at any time without prior notice.

Trademarks
DashRTL and DashThru are registered trademarks or trademarks of DashThru
Technology, Ltd. in the United States and other countries. Other product and company

names mentioned herein may be trademarks of their respective owners.

Disclaimer
DashThru Technology makes no representations or warranties about the accuracy,
reliability, completeness, or timeliness of the content provided by DashRTL. All content

is provided "as is" without any express or implied warranties.

DashRTL User Guide Version 2025.06

Contents

1 DashRTLINtroducCtion ...t 4
1-1 DashRTLFeature OVErVIEWceieieieieiiiiii et et eee e e aeees 5
1-2 DashRTL Installation and Deployment ..o e 5

2 DashRTLLAuNCh MOdEScouiuiniiiiii it 7
2-1 Simulation-Style Launch Mode ..oeiiiiiiii e 9
2-2 Synthesis-Style Launch Mode ...einiiiiii e 19
2-3 Handling File LiStS vueuiieiiitieee ettt et e ee e ee e eeeenaeas 34
2-4 Launch with Initialization SCriptS .eviiii e 39

3 GraphicalUserInterfaceooooieiiiiiiiii e 42
3-1 GUIWINAOW Layout ceeeneeee ettt et eee e e ees 43
3-2 Reviewing Classified MeSSAZES w.euiiininiiiiiiieieieeeee e eeeeeeeeaens 44
3-3 RTL Cross-probing within GUI eiiiiiieie et eee e 45
3-4 RTL Cross-probing with External EAitoroooeeiiiiiiieiiiieie e 46
3-5 Reloading RTL DESIZN eiiiiiee e ee et e ee e eee e eee e ee e ee e e naans 47

4 DaShRTL FEAtUIES ...eeiieiieie ettt et 48
4-1 RTLFile List CheCKing .cueneeieiiii ittt eee e ee e s 49
4-2 RTL Syntax ChecKing ..ceeiniiiiii et e 50
4-3 RTL Synthesizability Checking ..cc.euiiiiii e 50
4-4 RTL Design EXplorationeiniiiei ettt 51

Appendix A DashRTL Launch Optionscccoiiiiiiiiiiiiieee e 53

Appendix B DashRTL Tool Variablesccooiiiiiiiiiiiiiiiieanee 55

Appendix C DashRTL Tool Commandsccciiiiiiniiniiiiiiniineieeeneen. 57

DashRTL User Guide Version 2025.06

1 DashRTL Introduction

DashRTL is a high-speed digital design platform developed by DashThru Technology,
characterized by high performance and large capacity. To ensure the project schedule,
RTL coding typically requires frequent compilation to check for issues during digital
design development. As chip design scales up, using lint, synthesis or simulation tools
for compilation checks can become overwhelmingly time-consuming.

DashRTL uses a parallel HDL compiler optimized for speed. By reading RTL code
through DashRTL, fast design iterations can be performed. For large-scale SoC projects,
DashRTL's ultra-large capacity enables full-chip RTL compilation and checks,
eliminating the need for hierarchical RTL checks that were often required in the past.

DashRTL offers the following checks for RTL code:

e Checks for syntax errors and potential issues during the RTL compilation process.

o Verifies the synthesizability of RTL code, identifying non-synthesizable code early in
the project.

e After RTL compilation is complete, performs design exploration such as inspecting
hierarchies/parameters/cells/nets as well as their properties.

DashRTL User Guide Version 2025.06

1-1 DashRTL Feature Overview

For detailed information on DashRTL's RTL checking capabilities, please refer to
Section 4: DashRTL Features. DashRTL offers the following key features:

e Ultra-fast RTL code compilation to accelerate design iterations.

e Supports ultra-large capacity of full-chip design, enabling the reading of chip level
RTL code.

e Provides both Tcl and Python user interfaces, with flexible switching between Tcl
and Python shell modes.

e Supports both simulation-style and synthesis-style launch modes.

e Supports Verilog and SystemVerilog standards, with the ability to specify different
standards on a per-file basis.

e Provides a powerful built-in GUI for inspecting RTL syntax and design issues.

1-2 DashRTL Installation and Deployment

e Recommended Operating System Versions: RHEL/CentOS 6.5-7.9
Experimental support for RHEL/Rocky/Alma 8.x
To check the system version on RHEL and CentOS systems, view the system-release
file
% cat /etc/system-release
CentOS Linux release 7.9.2009 (Core)

e Installing DashRTL
Simply extract the compressed package to the installation directory.
% tar xJvf DashRTL_v2024.09.tar.xz

e Setting System Variables

System variables can be added to the shell initialization file (e.g., .cshrc). In the
following example, replace <installation_path> with the actual installation path.
After setting this, you can directly use the dashrt1 executable from the command line.

DASHTHRU_LICENSE_SERVER: Set this for the license server. Please refer to the DashLM
User Guide for details on how to obtain a license and start the license service. <port>
is the license service port, with a default of 28000. <hostname> refers to the machine
name or IP address where the DashLM license service is running.

DashRTL User Guide Version 2025.06

% setenv DASHTHRU_LICENSE_SERVER
<port>@<hostname>:<port>@<hostname>:..
% set path = ($path <installation_path>/DashRTL_v2024.09/bin)

The example for csh is as follows:
% setenv DASHTHRU_LICENSE_SERVER 28000@Llic_serverl:28000@Llic_server2
% set path = (Spath /edatool/DashRTL_v2024.09/bin)

e Launching DashRTL

% which dashrtl

/edatool/DashRTL_v2024.09/bin/dashrtl

% dashrtl

DashRTL(TM) Digital Design Platform

Copyright(c) 2024, DashThru Technology, Ltd. All rights reserved.

Version: v2024.09-Alpha, build 2024/09/20
Date: 2024/09/20 20:11:45

Host: EPYC / 128 Threads

Launch: dashrtl

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Tcl-Py'. (LIC-CO)
dashrtl-tcl>

DashRTL User Guide Version 2025.06

2 DashRTL Launch Modes

To accommodate the user preferences of various design engineers in the chip industry,
DashRTL offers two different launch modes: simulation-style and synthesis-style.

The synthesis-style launch mode can be accessed via either the Tcl Shell or Python Shell
interface. The Tcl Shell facilitates the traditional Tcl script usage, making it easier for
users to migrate scripts from other tools. The Python Shell provides a highly flexible
Python platform as an interface, suitable for users who require high flexibility in script
development.

Whether using Tcl Shell or Python Shell, users can choose between interactive mode
or batch mode for launching.

The following table describes the specific launch modes and their features:

Launch Shell Shell Features
Mode Mode
Simulation | Automatically Suitable for engineers familiar with
Style enters Tcl simulation tools (e.g., chip verification
Shell after engineers). Allows direct launching of the
launch. tool with RTL files specified via Linux
command line.
Tcl Interactive | Suitable for engineers familiar with
synthesis tools (e.g., chip synthesis
Synthesis Batch engineers). Requires using Tcl commands or
Style scripts to read RTL files.
Python Interactive | Suitable for engineers who need to develop

Batch Python scripts. Requires using Python

commands or scripts to read RTL files.

DashRTL User Guide Version 2025.06

DashRTL is executed via the executable file dashrt1 along with its associated options.
Options can be abbreviated; for example, -files and -f are the same option, and
-pymode and -py are equivalent. However, options starting with +, such as +incdir+,
cannot be abbreviated.

In addition, all launch modes and shell modes support the ~execute / -x option to
execute theinitialization script, as well as the dashrtl_rc. tcl initialization script file.
For detailed information, please refer to Section 2-4: Launch with Initialization Scripts.

Below are examples for both synthesis-style and simulation-style launch modes:

+H+

Synthesis Style

O

¢ dashrtl -files run.tcl -log run.log

Simulation Style: full option name

o

% dashrtl -log run.log -run -top mod_top -verilog -filelist rtl.lst

Simulation Style: compact option name

¢ dashrtl -1 run.log -r -t mod_top -ver -f rtl.lst

O

This chapter provides a detailed introduction to the two launch modes of DashRTL and
their related features. Please refer to the following sections:

e Simulation-Style Launch Mode

e Synthesis-Style Launch Mode
e HandlingFile Lists
e Launch with Initialization Scripts

DashRTL User Guide Version 2025.06

2-1 Simulation-Style Launch Mode

The DashRTL simulation-style launch mode allows the use of various options with the
dashrtl executable directly from the Linux shell to specify input files such as RTL codes
and the RTL file list. The usage is similar to mainstream simulation tools.

e Preparing Input Files

e Simulation-Style Launch Options

e Simulation-Style Launch Example

e Simulation-Style Launch Reference Examples

Preparing Input Files

e RTL Code Files: Supports Verilog or SystemVerilog standards.

e RTLFile List: A file containing a list of RTL code files. For the file list format,
please refer to Section 2-3: Handing File Lists.

e LIBFile List (Optional): Supports cell library files, such as memory and pad

cells used in chip design. If this file is not provided during launch, the
corresponding macro cells will be treated as black boxes.

Simulation-Style Launch Options

dashrtl <launch_options> -run <hdl_read_options>

launch_options: These are the launch options specific to DashRTL, such as -log
to specify the log file name, -gui/-no_gui to control whether the GUI is launched,
and other related options.

hdl_read_options: These are the options used to configure the reading of RTL files.
Forexample: dashrtl -run -f rtl. list.Sinceall arguments following -run are
treated as RTL reading options rather than DashRTL launch options, the -run
switch must follow all other startup options and be the last option used.

Correct Usage:
% dashrtl -log top -run -f rtl.list

DashRTL User Guide Version 2025.06

Incorrect Usage:
Error: '-log' is an incorrect option here

% dashrtl -run -f rtl.list -log top

-run cannot be used multiple times. If repeated, an error will occur:
% dashrtl -run optionl -run option2

Error: cannot use '-run' switch after '-run' switch.

-run and -files cannot be used together as they correspond to different launch
modes: simulation-style and synthesis-style, respectively. If multiple files are
specified forhd1_read_options, they must be enclosed in double quotes, such as:
% dashrtl -run -f "rtll.list rtl2.list"

There are two types of options for hd1_read_options:

Unordered options: These begin with a plus sign (+), such as +define+ and
+incdir+, and take effect as if they were specified at the beginning of the list,
regardless of their position within the list.

Ordered options: These begin with a minus sign (-), such as -verilog, ~undef, and
-define, and take effect only in the order they appear in the list.

e Launch Options: dashrtl <launch_options>

[-pymode]

Launch DashRTL in Python Shell mode. If this option is not used, the default is to
enter the Tcl Shell. When this option is used, DashRTL will stay in the Python Shell
(dashrtl-py) after RTL compilation is complete.

[-log "log_file_name cmd_file_name" | -no_log]

These two options cannot be used simultaneously. -log specifies the log file and
command file names. If this option is not used, dashrtl.log and dashrtl.cmd
files are generated by default. For example:

-log awill generate a.logand a.cmd

-log "a b" will generatea.logandb.cmd

-no_log prevents the generation of log and command files.

For more flexible usage, please refer to Simulation-Style Launch Example

[-no_overwrite]

By default, the tool overwrites the original log and command files upon each
launch. When this option is used, new log and command files will be generated
with a suffix. The file naming format will be xxx . LlogN and xxx.cmdN. For example,

10

DashRTL User Guide Version 2025.06

if the tool is launched twice, the following files will be created:
dashrtl.logl, dashrtl.cmdl
dashrtl.log2, dashrtl.cmd2

[-gui | -no_gui]

These two options cannot be used simultaneously. When -gui is used, the GUI will
open during launch. When -no_guii is used, the GUI will be forced to be disabled
during launch, and subsequent commands will not be able to enable the GUI.

In the simulation-style launch mode, if neither option is used, the GUI will be
opened by default during launch.

e RTL Reading Options: dashrtl -run <hdl_read_options>

-run [-filelist <hdl_filelists> | -f <hd|_filelists>]

Specifies the RTL filelist. Filelists can be nested within each other. If there are two
or more filelists, they can be enclosed in double quotes or specified multiple times
using -filelist. For example:

dashrtl -run -f "rtll.list rtl2.list"

dashrtl -run -f rtll.list -f rtl2.list

-run [-v01[-v2001|-v2k]
Specifies that the compiler should use the Verilog 2001 standard. This can also be
nested within the filelist.

-run [-v05|-v2005]
Specifies that the compiler should use the Verilog 2005 standard. This can also be
nested within the filelist.

-run [-sv09|-sv2009]
Specifies that the compiler should use the SystemVerilog 2009 standard. This can
also be nested within the filelist.

-run [-sv12|-sv2012]
Specifies that the compiler should use the SystemVerilog 2012 standard. This can
also be nested within the filelist.

-run [-sv17|-sv2017]

Specifies that the compiler should use the SystemVerilog 2017 standard. This can
also be nested within the filelist.

11

DashRTL User Guide Version 2025.06

-run [-sv23|-sv2023]
Specifies that the compiler should use the SystemVerilog 2023 standard. This can
also be nested within the filelist.

-run [-verilog]

Specifies that the compiler should use the standard defined by the tool variable
hd1l_default_std, which defaults to the Verilog 2005 standard. This can also be
nested within the filelist.

-run [-sverilog]

Specifies that the compiler should use the standard defined by the tool variable
hd1l_default_std, which defaults to the SystemVerilog 2009 standard. This can
also be nested within the filelist.

-run [-netlist]

Specifies that the compiler should use netlist mode for compilation. This can also
be nested within the filelist. This option can speed up netlist compilation but
should not be used for RTL code compilation.

-run [-autoext]

Specifies that the compiler should automatically select the appropriate HDL

standard for compilation based on the file extension of the RTL files. This can be

nested within the filelist.

The default behavior is:

e Files with the .v extension are compiled using the Verilog 2005 standard.

e Files with the .sv extension are compiled using the SystemVerilog 2009
standard.

e Fileswith the .vg extension are compiled using netlist mode.

If no files in the list match these extensions, a matching error will occur. The

extension matching can be modified using the +hdlext+ option.

This is the default behavior of the compiler, which automatically determines the

HDL standard based on file extensions if no other HDL standard is specified. Thefile

extension of include files is not evaluated; they will be compiled using the same

standard as the parent file.

-run [+hdlext+.<ext1>=<hdl_std1>+.<ext2>=<hd|_std2>+....."]

Used with —autoext to customize the suffix matching pattern. This can be nested

within the filelist.

e ext specifies the file extension of the RTL files.

e hdl_std specifies the HDL standard and must be one of the following: v01, v05,
sv09, sv12, sv17, sv23, verilog, sverilog, or netlist.

12

DashRTL User Guide Version 2025.06

Example usage:
dashrtl -run -autoext +hdlext+.v=v05+.sv=sv23 -f rtl.list

-run [-v <ignore_files>]

Specifies files in the filelist that contain memory/pad macro cells or behavioral
model Verilog files. Use -v to specify such files. These files are not RTL files, and the
compiler will ignore their contents in relation to the -v option. If there are multiple
files, they can be listed together or specified with -v multiple times.

Example usage:

dashrtl -run -f rtl.list -v "a.v b.v"

dashrtl -run -f rtl.list -v a.v -v b.v

-run [+incdir+<pathl>+<path2>+..]

Specifies the include file paths. This can be nested within the filelist. If there are
multiple paths, they can be separated by the + sign, or +incdir+ can be specified
multiple times. For example:

dashrtl -run +incdir+/rtl/top+/rtl/sub -f rtl.list

dashrtl -run +incdir+/rtl/top +incdir+/rtl/sub -f rtl.list

-run [+define+<macro_id1>(=<valuel>)+<macro_id2>(=<value2>)+...]

Specifies additional custom macros to define during compilation. This can be
nested within the filelist. macro_-id is the name of the macro. value is optional and
specifies the value of the macro definition.

For example, the following command:

dashrtl -run +define+A=0+B -f rtl.list

is equivalent to defining in RTL:

“define A 0

‘define B

If there are multiple macros, they can be separated by the + sign, or +define+ can
be specified multiple times. For example:

dashrtl -run +define+A=0+B=0 -f rtl.list

dashrtl -run +define+A=0 +define+B=0 -f rtl.list

-run [-top <design_name>]

Specifies the name of the top-level module in the design. This cannot be nested
within the filelist. If this option is not used, the tool will automatically infer the top-
level module. In this case, ensure that the inferred top-level module is correct.

-run [-liblist <lib_filelists>]
Specifies the timing library list file for macro cells. This cannot be nested within the
filelist. For example, if you have a file 1ib.1ist containing paths to all required

13

DashRTL User Guide Version 2025.06

library files:

/lib/celll. lib

/lib/cell2. lib

You can specify the Lib. List file like this:

dashrtl -run -1liblist lib.list -f rtl.list

Multiple 1ib. list files can be specified:

dashrtl -run -liblist "libl.list 1ib2.list" -f rtl.list

-run [-search_path <paths>]

Specifies the RTL search path, which is used to supportincomplete pathsin the RTL
file list. This cannot be nested within the filelist. If there are multiple paths, they
can be enclosed in double quotes or specified multiple times using -search_path.
For example:

dashrtl -run -search_path "/rtl/top /rtl/sub" -f rtl.list

dashrtl -run -search_path /rtl/top -search_path /rtl/sub -f
rtl.list

-run <hdl_files>

Specifies the HDL files directly without using a filelist. Any string that does not
begin with + or - (which are reserved for options) is treated as an HDL file path. For
example, the following command directly reads in top.v and sub. v:

dashrtl -run -v05 /rtl/top/top.v -f rtl.list sub.v

Simulation-Style Launch Example

e DashRTL HDL Standard Usage

DashRTL supports dynamically switching the compiler's HDL standard based on
different files. The following options can be used to change the current compiler
HDL standard. These options must be specified in the correct order, and it is
recommended to place them before the filelist or RTL files.
-v01|-v2001|-v2k|-v05|-v2005|-sv09|-sv2009]|-sv12|-sv2012|-sv17|-sv2017|-sv23|-
sv2023|-verilog|-sverilog|-netlist|-autoext

In Example 1, both the RTL filesin rt1. list and top. sv will be compiled using the
default compiler behavior. The file extensions will determine the appropriate HDL
standard:

.v files will use the Verilog 2005 standard by default.

14

DashRTL User Guide Version 2025.06

.sv files will use the SystemVerilog 2009 standard by default.
Example 1:
dashrtl -run -top mod_top -f rtl.list top.sv

In Example 2, the RTL files in rtl.list will be compiled based on their file
extensions. However, the -v01 option explicitly switches the compiler to the
Verilog 2001 standard. This ensures that top.v is compiled using Verilog 2001,
overriding the default Verilog 2005 standard.

Example 2:

dashrtl -run -top mod_top -f rtl.list -vO1l top.v

In example 3-1 (correct usage), the -v01 option is specified before top. v, ensuring
the compiler switches to the Verilog 2001 standard prior to compiling top.v. This
is the correct order of operations and ensures that top.v is compiled using the
Verilog 2001 standard.

Example 3-1:

dashrtl -run -top mod_top -vO1 top.v

In example 3-2 (incorrect usage), top.v is compiled first with the default Verilog
2005 standard, and the compiler is switched to Verilog 2001 afterward. This results
in top.v being compiled with the wrong standard, which is not the desired
behavior.

Example 3-2:

dashrtl -run -top mod_top top.v -vO1

In example 4, different files are compiled using different HDL standards:
rtll.listiscompiled using Verilog 2001 (-vO1).

sub.vand rt12. list are compiled using Verilog 2005 (-v05).

top.sv is compiled using SystemVerilog 2009 (-sv09).

This example demonstrates how to flexibly specify different HDL standards for
various files in a single compilation process.

Example 4:

dashrtl -run -top mod_top -vO01 -f rtll.list -v05 sub.v -f
rtl2.list -svB9 top.sv

In example 5, rtl. list is compiled using SystemVerilog 2023 (-sv23), and the -
autoext option is used to allow the compiler to automatically detect the HDL
standard based on file extensions:

sub.v is compiled using the default Verilog 2009 standard (since the file
extension . v is used).

top.sv is compiled using the default SystemVerilog 2009 standard (since the file

15

DashRTL User Guide Version 2025.06

extension . sv is used).

netlist.vgiscompiled using the default netlist mode (since thefile extension . vg
is used).

Example 5:

dashrtl -run -top mod_top -sv23 -f rtl.list -autoext sub.v top.sv
netlist.vg

In Example 6-1 (incorrect usage), an error will occur because the default —autoext
settings do not include . ve as a recognized extension. Therefore, the compiler will
not know how to handle sub. ve, leading to an error.

Example 6-1:

dashrtl -run -top mod_top -autoext sub.ve top.v -svB09 -f rtl.list

In Example 6-2 (correct usage), the +hdlext+ option is used to customize the file
extension matching for —autoext. Here, we define .ve to be compiled with the
Verilog 2001 standard (-v01), and . v to be compiled with the Verilog 2005 standard
(-v05), while the files in rt1. list will be compiled using the SystemVerilog 2009
standard (-sv09).

sub. ve will be compiled using Verilog 2001 (due to +hdlext+v01=.ve).

top.v will be compiled using Verilog 2005 (due to +hdlext+v05=.v).

rtl.list files will be compiled using SystemVerilog 2009 (due to -sv09).
Example 6-2:

dashrtl -run -top mod_top -autoext +hdlext+v0l=.ve+v05=.v sub.ve

top.v -sv09 -f rtl.list

e DashRTL Logging Usage

DashRTL by default generates log and command files:

dashrtl. log: The log file that records screen output.

dashrtl.cmd: The file that records the command list used after the tool is
launched.

The following examples demonstrate how to control the log and command file
generation using the -log option.

Example 1-1: No -log option is used, so the default dashrtl.log and
dashrtl.cmd files are generated.
dashrtl -run ...

Example 1-2: The -no_overwrite option is used, which prevents overwriting

existing log and command files. New files are created with the suffix N.

dashrtl -no_overwrite -run ...

16

DashRTL User Guide Version 2025.06

Example 2-1: The -log option specifies the prefix a, so the generated files are
a.logand a.cmd.
dashrtl -log a -run ...

Example 2-2: The -no_overwrite option is used, generating a. logN and a. cmdN
instead of overwriting a.log and a. cmd.

dashrtl -log a -no_overwrite -run ...

Example 3-1: The -1og option specifies a for the log prefix and b for the command
prefix, so a. log and b. cmd files are generated.
dashrtl -log "a b" -run ...

Example 3-2: The -no_overwrite option is used, so a.logN and b.cmdN are
generated instead of overwriting the original files.

dashrtl -log "a b" -no_overwrite -run ...

Example 4: The -no_log option is used, so no log or command files are
generated.

dashrtl -no_log -run ...

Example 5: The -1log option is set with an empty string for the log name, resulting
in no log file being generated, but the command file b. cmd is still created.
dashrtl -log '"" b' -run ...

Example 6: The -1log option is set with an empty string for the command file name,
resulting in the generation of only the log file a. log and no command file.
dashrtl -log 'a ""' -run ...

e DashRTL GUI Usage

In the simulation-style launch mode, DashRTL will by default launch the GUI,
allowing users to review compilation results and perform RTL cross-probing.
Therefore, Example 1 and Example 2 will automatically launch the GUI. Example
3 disables the GUI, so it will not open the GUI after launch.

Example 1: dashrtl -run ..

Example 2: dashrtl -gui -run ..
Example 3: dashrtl -no_gui -run ..

17

DashRTL User Guide Version 2025.06

Simulation-Style Launch Reference Examples

e Absolute Path File List
Prepare the RTL file list (rtl.list) and LIB library file (lib.list).

+define+MACRO*... /design/lib/pad.lib

+incdir+/design/rtl+... /design/lib/mem32x32.lib
/design/rtl/top.v /design/lib/mem32x64.lib
/design/rtl/subyvy || ...

Example 1 (Recommended): All macro cells are correctly identified according to
the lib file.

% dashrtl -log top -run -top mod_top -liblist lib.list -verilog
-f rtl.list

Example 2: All macro cells are treated as black boxes, with their pins considered as
1-bit wide inout.
% dashrtl -log top -run -top mod_top -verilog -f rtl.list

e Relative Path File List
Prepare the RTL file list (rtl.list) and LIB library file (lib.list).

+define+MACRO+-.. pad.lib

+incdirt+/design/rtl+... mem32x32.lib
top.v mem32x64.lib
subv] .

Example 1 (Recommended): All macro cells are correctly identified according to
the lib file.

% dashrtl -log top -run -top mod_top -search_path /design/rtl
-search_path /design/lib -liblist lib.list -verilog -f rtl.list

Example 2: All macro cells are treated as black boxes, with their pins considered as
1-bit wide inout.

% dashrtl -log top -run -top mod_top -search_path /design/rtl
-search_path /design/lib -verilog -f rtl.list

18

DashRTL User Guide Version 2025.06

2-2 Synthesis-Style Launch Mode

DashRTL's synthesis-style launch mode enters the Tcl Shell by default, where RTL file
reading and LIB file reading are controlled via Tcl Shell commands and variables, similar
to mainstream synthesis tools.

e Preparing Input Files

e Synthesis-Style Launch Options

e Interactive and Batch Shell Mode

e Dynamically Switching Between Tcl Shell and Python Shell

e Setting Tool Variables

e Reading Cell Libraries
e Reading RTL Files
e Synthesis-Style Launch Reference Examples

Preparing Input Files

e RTL Code Files: Supports Verilog or SystemVerilog standards.

e RTL Filelist: Afile containing a list of RTL code files. For the filelist format,
please refer to Section 2-3: Handling File Lists.

e LIBList File (Optional): Supports cell library files, such as memory and pad
cells used in chip design. If this file is not provided during launch, the
corresponding macro cells will be treated as black boxes.

e Tcl Script File (Optional for Tcl Shell Mode): Can be executed directly upon
launch. If this file is not provided, commands must be manually entered in
the Tcl Shell.

e Python Script File (Optional for Python Shell Mode): Can be executed
directly upon launch. If this file is not provided, commands must be
manually entered in the Python Shell.

Synthesis-Style Launch Options

[-files <startup_exec_tcl_or_python_script_files>]
startup_exec_tcl_or_python_script_files refers to the script files executed
atlaunch. In Tcl mode, a Tcl scriptis required, and in Python mode, a Python script
is required. Examples:

19

DashRTL User Guide Version 2025.06

dashrtl -f run.tcl

dashrtl -f run.py -pymode

This option allows specifying two or more script files, which can be enclosed in
double quotes "" or specified multiple times using - f. Examples:

dashrtl -f "runl.tcl run2.tcl"

dashrtl -f runl.tcl -f run2.tcl

[-execute | -x <startup_exec_tcl_or_python_scripts>]

Executes user-defined scripts at launch. The script type must match the mode (Tcl
or Python). Examples:

dashrtl -x "set a 0" -f run.tcl

dashrtl -x "a=0" -pymode -f run.py

This option can be used multiple times. In the example below, the contents inside
-x will be executed in order during launch:

dashrtl -x "set a 0" -x "set b 1" -f run.tcl

[-pymode]
Enters the Python Shell upon launch. If this option is not used, the default is to
enter the Tcl Shell.

[-log "log_file_name cmd_file_name" | -no_log]

These two options cannot be used simultaneously. -log specifies the log file and
command file names. If this option is not used, dashrtl.log and dashrtl.cmd
files are generated by default. For example:

-log awill generate a.logand a.cmd

-log "a b" will generatea.logandb.cmd

-no_log prevents the generation of log and command files.

For more flexible usage, please refer to Simulation-Style Launch Example

[-no_overwrite]

By default, the tool overwrites the original log and command files upon each
launch. When this option is used, new log and command files will be generated
with a suffix. The file naming format will be xxx. LlogN and xxx.cmdN. For example,
if the tool is launched twice, the following files will be created:

dashrtl.logl, dashrtl.cmdl

dashrtl.log2, dashrtl.cmd2

[-gui | -no_gui]

These two options cannot be used simultaneously. When -gui is used, the GUI will
open during launch. When -no_gui is used, the GUI will be forced to be disabled
during launch, and subsequent commands will not be able to enable the GUI.

20

DashRTL User Guide Version 2025.06

In synthesis-style launch mode, if neither option is used, the GUI will not be opened
by default, but can later be launched using the start_gui command.

Interactive and Batch Shell Mode

e Interactive Shell Mode

If no script file is specified using the - f+i les option during launch, DashRTL enters
the interactive mode. Upon launch, DashRTL enters either the Tcl Shell or Python
Shell, where you can manually execute Tcl or Python commands.

The following command will enter the Tcl Shell:

% dashrtl

DashRTL(TM) Digital Design Platform

Copyright(c) 2024, DashThru, Ltd. ALl rights reserved.

Version: v2024.09-Alpha, build 2024/09/20
Date: 2024/09/20 20:11:45

Host: EPYC / 128 Threads

Launch: dashrtl

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Tcl-Py'. (LIC-CO)
dashrtl-tcl>

The following command will enter the Python Shell:

% dashrtl -pymode

DashRTL(TM) Digital Design Platform

Copyright(c) 2024, DashThru, Ltd. All rights reserved.

Version: v2024.09-Alpha, build 2024/09/20
Date: 2024/09/20 20:11:45

Host: EPYC / 128 Threads

Launch: dashrtl

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Tcl-Py'. (LIC-CO)
dashrtl-py>

21

DashRTL User Guide Version 2025.06

e Batch Shell Mode
If the - f+iles option is used during launch to specify a script file, DashRTL enters
the batch mode. The script file type executed in batch mode must match the Shell
type, meaning Tcl Shell can only execute Tcl scripts, and Python Shell can only
execute Python scripts.

The following command enters Tcl Shell and executes the run. tcl script:
% dashrtl -f run.tcl

DashRTL(TM) Digital Design Platform

Copyright(c) 2024, DashThru, Ltd. All rights reserved.

Version: v2024.09-Alpha, build 2024/09/20
Date: 2024/09/20 20:11:45

Host: EPYC / 128 Threads

Launch: dashrtl

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Tcl-Py'. (LIC-CO)
set_tool_var search_path "S$search_path /design/rtl"
read_libs "pad.lib mem32x32.1ib"

analyze -hdl_type verilog [read_flist rtl.list]

The following command enters Python Shell and executes the run.py script:
$ dashrtl -f run.py -pymode

DashRTL(TM) Digital Design Platform

Copyright(c) 2024, DashThru, Ltd. All rights reserved.

Version: v2024.09-Alpha, build 2024/09/20
Date: 2024/09/20 20:11:45

Host: EPYC / 128 Threads

Launch: dashrtl

Feedback: support@dashthru.com

Info: checked out license 'FusionShell-Tcl-Py'. (LIC-CO)
tcl.proc.set_tool_var('search_path',search_path ... ')
tcl.proc.read_libs('pad.lib mem32x32.1lib ... ")
tcl.proc.analyze('-hdl_type', 'verilog',
tcl.proc.read_flist('rtl.list'))

22

DashRTL User Guide Version 2025.06

Dynamically Switching Between Tcl Shell and Python Shell

DashRTL supports dynamically switching between Tcl Shell and Python Shell
without exiting, and the variables set before the switch are retained. To switch from
Tcl Shell to Python Shell, use the pymode command, and to switch from Python
Shell back to Tcl Shell, use the tclmode () command.

For the list of commands available in both Tcl Shell and Python Shell, please refer
to Appendix C: DashRTL Tool Commands. Most of the commands and variables in
Tcl Shell and Python Shell have corresponding counterparts, such as:

Tool Command Tool Variable
Tcl Shell analyze hdl_default_std
Python Shell tcl.proc.analyze tcl.var.hdl_default_std

The following example demonstrates the process of switching from Tcl Shell to
Python Shell, and then back to Tcl Shell. The variable a set in Tcl Shell is visible in
Python Shell, and similarly, the variable b set in Python Shell is visible in Tcl Shell.

dashrtl-tcl> set a 0
0
dashrtl-tcl> pymode

dashrtl-py> a

o Python Shell
dashrtl-py> b="0"

dashrtl-py> tclmode()

dashrtl-tcl> return $b

Tcl Shell

0 Tcl Shell
dashrtl-tcl> return S$a
0]

Setting Tool Variables

DashRTL has predefined tool variables, and by setting these tool variables, you can
control the corresponding tool behaviors. Tool variables can be set using either set

23

DashRTL User Guide Version 2025.06

or set_tool_var in both Tcl Shell and Python Shell. It is recommended to use
set_tool_var, as this command can check the validity of the variable name and
value, as well as flexibly modify secondary options.

Complete setting of tool variables in Tcl Shell:

dashrtl-tcl> set_tool_var crossprobe_exec "code --goto
{filepath}:{line}"

code --goto {filepath}:{line}

dashrtl-tcl> set crossprobe_exec "code --goto {filepath}:{line}"
code --goto {filepath}:{line}

Partial modification of tool variables in Tcl Shell (only for variables with secondary
options):
dashrtl-tcl> set_tool_var hdl_default_ext -verilog .v.vh

verilog=.v.vh sverilog=.sv netlist=.vg

Setting tool variables in Python Shell:

dashrtl-py> tcl.proc.set_tool_var('crossprobe_exec', 'code --goto
{filepath}:{1line}")

dashrtl-py> tcl.proc.set('crossprobe_exec', 'code --goto
{filepath}:{line}")

Reading Cell Libraries

Reading the Cell Library is an optional step, typically used to identify macro cells
like memory or pad cells in the RTL design. If this step is not performed, the tool
will treat these cells as black boxes, and all the pins of the black boxes will be
treated as 1-bit inout. Therefore, to ensure the completeness of the design, it is
recommended to execute this step.

The libraries can be read using the read_1ibs command, and you can specify the
paths of the libfiles in a list, like this:
read_libs "/design/lib/mem.lib /design/lib/pad.lib"

Alternatively, you can put all the lib paths in a lib filelist and read them using the

following command:
read_T1libs [read_flist 1lib.1lst]

24

DashRTL User Guide Version 2025.06

Reading RTL Files

RTL compilation involves two steps: analyze and elaborate, and these must be
executed in the order of analyze -> elaborate. The analyze step specifies the HDL
file paths and the compilation standard, while the elaborate step specifies the top-
level design name.

The analyze step allows flexible control of RTL input through hd1_read_options.
Users can specify RTL input using a file list, a list of HDL files, or a mixed list.

filelist

analyze -hdl_type verilog [read_flist rtl.list]

HDL files

analyze -hdl_type verilog "top.v sub.v"

mixed list

analyze -hdl_type verilog "+define+TESTMODE -v05 top.v sub.v \
-sv09 [read_flist rtl.list]"

The elaborate step specifies the name of the top-level module, and the tool will
compile based on this top-level. If the top-level name is not specified, elaborate
will automatically infer the top-level. Users need to verify that the inferred top-level
is correct. If more than one top-level is inferred, an error will occur.

Automatic inference
elaborate
Specify top-level module

elaborate top

analyze
-hdl_type <hdl_type_name>
The hdl_type_name option specifies the initial compilation mode for the
compiler. Only one of the following methods can be selected:

[v01|v2001|v2k]:

Specifies that the compiler should use the Verilog 2001 standard.

[v05 | v2005]:

Specifies that the compiler should use the Verilog 2005 standard.

[sv09 | sv2009]:

Specifies that the compiler should use the SystemVerilog 2009 standard.
[sv12|sv2012]:

25

DashRTL User Guide Version 2025.06

Specifies that the compiler should use the SystemVerilog 2012 standard.

[sv17]|sv2017]:

Specifies that the compiler should use the SystemVerilog 2017 standard.

[sv23|sv2023]:

Specifies that the compiler should use the SystemVerilog 2023 standard.

[verilog]:

Specifies that the compiler should use the standard defined by the tool

variable hd1_default_std, which defaults to the Verilog 2005 standard.

[sverilog]:

Specifies that the compiler should use the standard defined by the tool

variable hdl_default_std, which defaults to the SystemVerilog 2009

standard.

[netlist]:

Specifies that the compiler should use netlist mode for compilation. This

option can speed up netlist compilation but should not be used for RTL code

compilation.

[autoext | (default):

Specifies that the compiler should automatically select the appropriate HDL

standard for compilation based on the file extension of the RTL files.

The default behavior is:

e Fileswith the .v extension are compiled using the Verilog 2005 standard.

e Files with the .sv extension are compiled using the SystemVerilog 2009
standard.

e Files with the .vg extension are compiled using netlist mode.

If no files in the list match these extensions, a matching error will occur. The

extension matching can be modified using the hd1_default_ext variable.

This behavior is the default compilation method for analyze. If the -hd1_type

option is not used, the autoext method will be applied by default.

-define "<macro_id1>(=<valuel>) <macro_id2>(=<value2>)..."

This option is used to define additional macros at the start of the compilation.
The macro_id is the name of the macro, and the value is optional,
representing the value of the macro definition. For example:

analyze -define "A=0 B"

is equivalent to the following definitions in RTL:
“define A ©

“define B

"<hdl_read_options> | [read_flist <hdl_filelists>]"

hdl_read_options can be used with various flexible options to sequentially
read RTL files. These options can either be specified directly after the analyze

26

DashRTL User Guide Version 2025.06

command or placed in an HDL filelist (which must be converted to a regular list
using the read_f11ist command before being passed to analyze).

There are two types of options for hd1_read_options:

Unordered options: These begin with a plus sign (+), such as +define+ and
+incdir+, and take effect as if they were specified at the beginning of the list,
regardless of their position within the list.

Ordered options: These begin with a minus sign (-), such as -verilog, —undef,
and -define, and take effect only in the order they appear in the list.

[-v01|-v2001|-v2k]
Specifies that the compiler should use the Verilog 2001 standard. This can also
be nested within the filelist.

[-v05|-v2005]
Specifies that the compiler should use the Verilog 2005 standard. This can also
be nested within the filelist.

[-sv09]-sv2009]
Specifies that the compiler should use the SystemVerilog 2009 standard. This
can also be nested within the filelist.

[-sv12]-sv2012]
Specifies that the compiler should use the SystemVerilog 2012 standard. This
can also be nested within the filelist.

[-sv17|-sv2017]
Specifies that the compiler should use the SystemVerilog 2017 standard. This
can also be nested within the filelist.

[-sv23]-sv2023]
Specifies that the compiler should use the SystemVerilog 2023 standard. This
can also be nested within the filelist.

[-verilog]

Specifies that the compiler should use the standard defined by the tool
variable hdl_default_std, which defaults to the Verilog 2005 standard. This
can also be nested within the filelist.

[-sverilog]
Specifies that the compiler should use the standard defined by the tool

27

DashRTL User Guide Version 2025.06

variable hdl_default_std, which defaults to the SystemVerilog 2009
standard. This can also be nested within the filelist.

[-netlist]

Specifies that the compiler should use netlist mode for compilation. This can
also be nested within the filelist. This option can speed up netlist compilation
but should not be used for RTL code compilation.

[-autoext]

Specifies that the compiler should automatically select the appropriate HDL

standard for compilation based on the file extension of the RTL files. This can

be nested within the filelist.

The default behavior is:

e Fileswith the .v extension are compiled using the Verilog 2005 standard.

o Files with the .sv extension are compiled using the SystemVerilog 2009
standard.

e Files with the .vg extension are compiled using netlist mode.

If no files in the list match these extensions, a matching error will occur. The

extension matching can be modified using the -hdlext option.

This is the default behavior of the compiler, which automatically determines

the HDL standard based on file extensions if no other HDL standard is specified.

The file extension of include files is not evaluated; they will be compiled using

the same standard as the parent file.

[-hdlext "<hdl_std1>=<ext_list1> <hd|_std2>=<ext_list2>"]

Used in conjunction with -autoext, this option customizes the extension

matching pattern. It can be nested within a filelist. ext_1ist specifies a list of

extensions, such as .v.vh. hdl_std specifies the HDL standard, and must be

one of v01,v05, sv09, sv12, sv17, sv23, verilog, sverilog, or netlist. For example:

analyze "-autoext -hdlext \"verilog=.v.vh sverilog=.sv\" \
[read_flist rtl.list]"

[-v <ignore_files>]

Specifies files in the filelist that contain memory/pad macro cells or behavioral
model Verilog files. Use -v to specify such files. These files are not RTL files,
and the compiler will ignore their contents in relation to the -v option. If there
are multiple files, they can be listed together or specified with -v multiple
times. For example:

analyze "[read_flist rtl.list] -v \"a.v b.v\""

analyze "[read_flist rtl.list] -v a.v -v b.v"

28

DashRTL User Guide Version 2025.06

[+incdirt<pathl>+<path2>+...]

Specifies the include file paths. This can be nested within the filelist. If there
are multiple paths, they can be separated by the + sign, or +incdir+ can be
specified multiple times. For example:

analyze "+incdir+/rtl/top+/rtl/sub [read_flist rtl.list]"
analyze "+incdir+/rtl/top +incdir+/rtl/sub [read_flist

rtl. list]"

[+definet<macro_id1>(=<valuel>)+<macro_id2>(=<value2>)+...]

Specifies additional custom macros to define during compilation. This can be
nested within thefilelist. macro_id is the name of the macro. value is optional
and specifies the value of the macro definition.

For example, the following command:

analyze "+define+A=0+B [read_flist rtl.list]"

is equivalent to defining in RTL:

“define A O

“define B

If there are multiple macros, they can be separated by the + sign, or +define+
can be specified multiple times. For example:

analyze "+define+A=0+B=0 [read_flist rtl.Llist]"

analyze "+define+A=0 +define+B=0 [read_flist rtl.list]"

[-define "<macro_id1>(=<valuel>) <macro_id2>(=<value2>) ... "]

Specifies additional custom macros to define during compilation. This can be
nested within thefilelist. macro_id is the name of the macro. value is optional
and specifies the value of the macro definition. This option differs from
+define+ in that +define+ is unordered, whereas -define is ordered.

For example, the following command:

analyze "-define A=0 -define B [read_flist rtl.list]"

is equivalent to defining in RTL:

“define A ©

“define B

If there are more than two macros, they can be specified as a list or using
-define multiple times. For example:

analyze "-define \"A=0 B=0\" [read_flist rtl.list]"

analyze "-define A=0 -define B=0 [read_flist rtl.list]"

[-undef "<macro_id1><macro_id2> ... "]

This option deletes the defined macros during compilation, and can be nested
within a filelist. The macro_id refers to the macro names. After using this
option, the specified macros will not exist in the subsequent RTL files.

29

DashRTL User Guide Version 2025.06

analyze "-f rtll.list -undef A -undef B -f rtl2.list"

This is equivalent to inserting the following between the compilation of
rtll.listand rtl2. list:

‘undef A

‘undef B

If there are more than two macros, they can be specified as a list or using
-undef multiple times. For example:

analyze "-undef \"A B\" [read_flist rtl.list]"

analyze "-undef A -undef B [read_flist rtl.list]"

[-undef_all]
This option deletes all defined macros during compilation, and can be nested
within a filelist. After using this option, no macros will exist in the subsequent
RTL files.
analyze "[read_flist rtll.list] -undef_all \

[read_flist rtl2.list]"
This is equivalent to deleting all defined macros between the compilation of
rtll.listand rtl2.list.

[-print_macros <print_macro_file>]
This option prints the values of the defined macros during compilation, and
can be nested within a filelist. If the print_macro_file path is not specified,
the macro information will be printed to the screen. The following example
prints the macro status after compiling rt11. Llist to the screen:
analyze "[read_flist rtll.list] -print_macros \"\""
If the print_macro_file path is specified, the macro information will be
printed to the specified file. The following example prints the macro status
after compiling rtl1. list tomacro. log:
analyze "[read_flist rtll.list] \

-print_macros /design/log/macro.log \

[read_flist rtl2.list]"

elaborate

-parameters "<param_1>=<valuel> <param_2>=<value2> .."
This option modifies the parameter values of the top-level module. When
using automatic top-level inference, you must ensure that the parameter
names specified in -parameters match those inferred in the top-level module.
The parameter values support Verilog numeric formats. For example:

elaborate top -parameters "BIT_WIDTH=16 DATA=3'bl10"

30

DashRTL User Guide Version 2025.06

<top_module_name>

The elaborate step specifies the name of the top-level module, and the tool
will compile based on this top-level. If the top-level name is not specified,
elaborate will automatically infer the top-level. Users need to verify that the
inferred top-level is correct. If more than one top-level is inferred, an error will
occur. For example:

Automatic inference

elaborate

Specify top-level module

elaborate top

Synthesis-Style Launch Reference Examples

P

Absolute Path File List
repare the RTL file list (rtl.list) and LIB library file (lib.list).

+define+MACRO*-.. /design/lib/pad.lib

+incdirt+/design/rtl+... /design/lib/mem32x32.lib

/design/rtl/top.v /design/lib/mem32x64.lib
/design/rtl/subyvy || ...
Tcl Shell Mode:
Set Tool Variables
run.tcl
set_tool_var search_path "Ssearch_path ..."

set_tool_var hdl_default_std -verilog v05
set_tool_var hdl_default_std -sverilog sv09

Optional: Read Lib

read_libs "/design/lib/pad.lib /design/lib/mem32x32.lib ... "
#OR

read_libs [read_flist /design/filelist/lib.list]

RTL Analyze+Elaborate
analyze -hd|_type verilog [read_flist /design/filelist/rtl.list]
elaborate top

Debug From GUI
start_gui

%

dashrtl -f run.tcl -log run

31

DashRTL User Guide Version 2025.06

Python Shell Mode:

Set Tool Variables
tcl.proc.set_tool_var('search_path’, f'{search_path}...") -PY

tcl.proc.set_tool_var('hdl_default_std’, 'verilog=v05 sverilog=sv09')

Optional: Read Lib

tcl.proc.read_Llibs('/design/lib/pad.lib’, '/design/lib/mem32x32.lib}, ...)
#OR

tcl.proc.read_Llibs(tcl.proc.read_flist('/design/filelist/lib.list"))

RTL Analyze+Elaborate

tcl.proc.analyze('-hdl_type!, 'verilog',
tcl.proc.read_flist('/design/filelist/rtl.list'))

tcl.proc.elaborate('top’)

Debug From GUI
tcl.proc.start_gui

% dashrtl -f run.py -log run -pymode

e Relative Path File List
Prepare the RTL file list (rtl.list) and LIB library file (lib.list).

+define+MACRO+... pad.lib

+incdir+/design/rtl+... mem32x32.lib
top.v mem32x64.lib

subv || ...

32

DashRTL User Guide Version 2025.06

Tcl Shell Mode:

Set Tool Variables
run.tcl
set_tool_var search_path "Ssearch_path \

/design/filelist /design/rtl /design/lib"
set_tool_var hdl_default_std -verilog v05
set_tool_var hdl_default_std -sverilog sv09

Optional: Read Lib

read_libs "pad.lib mem32x32.lib ... "
#OR

read_libs [read_flist lib.list]

RTL Analyze+Elaborate
analyze -hdl|_type verilog [read_flist rtl.list]
elaborate top

Debug From GUI
start_gui

% dashrtl -f run.tcl -log run
Python Shell Mode:

Set Tool Variables -
run.py
tcl.proc.set_tool_var('search_path!,

f'{search_path} /design/filelist /design/rtl /design/lib’)
tcl.proc.set_tool_var('hdl_default_std’, 'verilog=v05 sverilog=sv09')

Optional: Read Lib
tcl.proc.read_libs('pad.lib, 'mem32x32.lib}, ...)
#OR
tcl.proc.read_Llibs(tcl.proc.read_flist('lib.list"))

RTL Analyze+Elaborate
tcl.proc.analyze('-hd|_type', 'verilog', tcl.proc.read_flist('rtl.list"))
tcl.proc.elaborate('top’)

Debug From GUI
tcl.proc.start_gui

% dashrtl -f run.py -log run -pymode

33

DashRTL User Guide Version 2025.06

2-3 Handling File Lists

The flist file is a special file format in DashRTL, commonly used when commands or
variables involve long lists, which could make scripts unwieldy. For example, HDL file
lists following the analyze command, library file lists following the read_libs
command, and path lists following the set search_path command can all be placed in
a flist file. You can then use the read_f1list command to convert the contents into
aregular list to be passed to commands or variables.

The elementsin a flist file can be separated by spaces or newlines. For example:
-verilog top.v sub.v

is equivalent to:

-verilog

top.v

sub.v

When using a flist, you need to use the read_flist command to read the file. The
converted list can then be directly used in commands or variable assignments. flist
files can also be nested and support both regular and special comments. Regular
comments include single-line comments (#, //) and multi-line comments (/* x/).

This isa comment rtl list /* Thisis a comment linel 2. list

-frtl2.list This isa comment line2
// Thisis a comment */
/design/rtl/top.v //This is a comment /design/rtl/define.v

/design/rtl/sub.v/* Thisisa comment*/

For example:

analyze -hdl_type verilog [read_flist rtll.list]

is equivalent to:

analyze -hdl_type verilog "/design/rtl/define.v /design/rtl/top.v
/design/rtl/sub.v"

Special comments must follow the format // dashthru <flist_items>. In this case,
although the flist_items are within the comment, the read_flist command will
still recognize the dashthru keyword and output the items from the comment into the
list. This allows for more flexible modification of the contents of the file without
changing the original file list.

34

DashRTL User Guide Version 2025.06

// OLD LIST: old.lst // NEW LIST: new.lst
/design/rtl/define.v /design/rtl/define.v
/design/rtl/top.v // dashthru +define+MACRO
/design/rtl/sub.v /design/rtl/top.v
/design/rtl/sub.v
// dashthru /design/rtl/mod.v

In the above example, the left side represents the original HDL file list, and the right side
is the new HDL file list with two lines of special comments added. This new HDL file list
is still usable in third-party tools and is equivalent in effect to the original filel ist.
However, in DashRTL, executing the command:

analyze -hdl_type verilog [read_flist new.list]

is equivalent to adding two more lines to the list, which is functionally equivalent to
running:

analyze -hdl_type verilog "/design/rtl/define.v +define+MACRO
/design/rtl/top.v /design/rtl/sub.v /design/rtl/mod.v"

Using flist makes it easy to store elements of acommand orvariablein a file and then

convertthemintoalistusing read_flist. Thefollowing sections will demonstrate how
tOuseflisttospecﬁysearch_path,get_cells,hdl_filelist,andlib_fﬁlelﬁst

Using flist to Specify search_path

// Search Path: search.|st // Search Path: libsearch.|st
$search_path /design/lib/mem
/design/rtl /design/lib/pad
/design/rtl/top

// dashthru -f libsearch.Ist

In a script, using the command set search_path [read_flist search.lst]is
equivalent to:

set search_path "S$search_path /design/rtl design/rtl/top
/design/1lib/mem /design/lib/pad"

You can also mix normal lists and flist. For example:
set search_path "$search_path /design/rtl design/rtl/top

35

DashRTL User Guide

[read_flist libsearch.list]"

This is functionally equivalent to:

Version 2025.06

set search_path "$search_path /design/rtl design/rtl/top

/design/1lib/mem /design/lib/pad"

Using flist to Specify get_cells

// Cell List: cell.lst

// dashthru u_chip/data_reg
u_chip/u_subl/data_reg*
-f mem.Ist

// Memory List: mem.lst

u_chip/u_mem32x32
u_chip/u_mem32x64

In ascript, usingthe command get_cells [read_flist cell.lst] isequivalent

to:

get_cells "u_chip/data_reg u_chip/u_subl/data_regx*

u_chip/u_mem32x32 u_chip/u_mem32x64"

You can also mix normal lists and flist. For example:

get_cells "u_chip/u_subl/data_reg*x [read_flist mem.lst]"

This is functionally equivalent to:

get_cells "u_chip/u_subl/data_regx u_chip/u_mem32x32

u_chip/u_mem32x64"

Using flist to Specify HDL File List

// RTL1 List: rtl1.Ist

// dashthru +define+TESTMODE
+incdir+/design/rtl
/design/rtl/top.v
/design/rtl/sub_top.v

-f rtl2.lst

// RTL2 List: rtl2.Ist

-verilog /design/rtl/subl.v
-sverilog /design/rtl/sub2.sv

36

DashRTL User Guide Version 2025.06

e Simulation-Style Launch Mode

Launch withdashrtl -run -f rtll.1lstisequivalentto executing:
dashrtl -run +define+TESTMODE +incdir+/design/rtl
/design/rtl/top.v /design/rtl/sub_top.v -verilog
/design/rtl/subl.v -sverilog /design/rtl/sub2.sv

You can also mix normal lists and flist, for example:
dashrtl -run -top mod_top -f rtll.lst

This is equivalent to:

dashrtl -run -top mod_top +define+TESTMODE +incdir+/design/rtl
/design/rtl/top.v /design/rtl/sub_top.v -verilog
/design/rtl/subl.v -sverilog /design/rtl/sub2.sv

When multiple flist files are used, you can specify - f multiple times, such as:
dashrtl -run -top mod_top -f rtll.lst -f rtl2.1lst

e Synthesis-Style Launch Mode

In the script, using analyze -hdl_type verilog [read_flist rtll.lst]is
equivalent to executing:

analyze -hdl_type verilog "+define+TESTMODE +incdir+/design/rtl
/design/rtl/top.v /design/rtl/sub_top.v -verilog
/design/rtl/subl.v -sverilog /design/rtl/sub2.sv"

You can also mix normal lists and flist, for example:
analyze -hdl_type verilog "+incdir+/design [read_flist rtll.lst]
/design/rtl/sub3.sv"

This is equivalent to:

analyze -hdl_type verilog "+incdir+/design +define+TESTMODE
+incdir+/design/rtl /design/rtl/top.v /design/rtl/sub_top.v
-verilog /design/rtl/subl.v -sverilog /design/rtl/sub2.sv
/design/rtl/sub3.sv"

When there are multiple flist files, you can use read_flist to specify multiple

flist paths, for example:
analyze -hdl_type verilog [read_flist rtll.lst rtl2.1lst]

37

DashRTL User Guide Version 2025.06

Using flist to Specify LIB File List

// RTL1 List: lib1.Ist // RTL2 List: lib2.Ist
/design/lib/pad.lib /design/lib/mem32x32.lib
// dashthru /design/lib/pll.lib /design/lib/mem32x64.lib
-flib2.lst

e Simulation-Style Launch Mode

Launch with dashrtl -run -liblist libl.lst -f rtl.1lst isequivalentto
reading in 4 libraries:

/design/lib/pad.lib

/design/lib/pll. lib

/design/lib/mem32x32.1l1b

/design/lib/mem32x64.11ib

If there are multiple flist files, you can specify -1iblist multiple times, for
example:
dashrtl -run -liblist libl.lst -liblist 1lib2.1lst -f rtl.lst

e Synthesis-Style Launch Mode

In the script, using read_libs [read_flist rtll.lst] is equivalent to
executing:

read_libs "/design/lib/pad.lib /design/1lib/pll.1lib
/design/lib/mem32x32.1ib /design/lib/mem32x64.1ib"

You can also mix normal lists and flist, for example:
read_libs "[read_flist libl.lst] /design/lib/mem64x64.1ib"

This is equivalent to:

read_1libs "/design/lib/pad.lib /design/lib/pll.1l1ib
/design/1lib/mem32x32.1lib /design/lib/mem32x64.11b
/design/1lib/mem64x64.1ib"

When there are multiple flist files, you can use read_flist to specify multiple
flist paths, for example:

read_Tlibs [read_flist 1libl.lst 1ib2.1lst]

38

DashRTL User Guide Version 2025.06

2-4 Launch with Initialization Scripts

Whether DashRTL is launched in simulation-style or synthesis-style mode, or in Tcl
Shell or Python Shell mode, it supports the ~execute/-x option for the execution of
initialization scripts, as well as the dashrt1_rc. tcl initialization script file.

The -execute/-x option can be used once or multiple times. If used multiple times,
the scripts will be executed in the order they are specified. For examples:

% dashrtl -x 'set DESIGN_TOP top'

% dashrtl -x 'set DESIGN_TOP top;puts SDESIGN_TOP;'

% dashrtl -x 'set DESIGN_TOP top' -x 'puts S$SDESIGN_TOP'

If the user wishes to execute an initialization script file before startup, the file must be
placed in the following path. If the . dashthru hidden directory does not exist, the
user needs to create it manually:

% 1ls ~/.dashthru/dashrtl_rc.tcl

Simulation-Style Launch Mode

In simulation-style launch mode, the initialization script execution sequence in
DashRTL is as follows:

1. Executethe~/.dashthru/dashrtl_rc.tclinitialization script file (if present).
2. Execute any single or multiple —execute/-x options (if present).

3. Execute the compile options specified after the —run option.

4. Execute any single or multiple ~execute/-x options again (if present).

Note: As mentioned in the introduction to simulation-style launch options, all
options following -run are recognized as RTL compilation options. However, the
-execute/-x options are exceptions. This allows users to execute customized
scripts after RTL compilation.

e Tcl Shell Initialization Script Example

% dashrtl -x 'puts "Execute scriptl before rtl read"' \
-x 'puts "Execute script2 before rtl read"' \
-run top.v \
-x 'puts "Execute script3 after rtl read"' \
-x 'puts "Execute script4 after rtl read"' \

-x 'exit'

39

DashRTL User Guide

Info: loading init script'/home/adam/.dashthru/dashrtl_rc.tcl'.
(SHELL-INIT)

Execute scriptl before rtl read

Execute script2 before rtl read

Info: elaborated design 'top' in Os. (ELAB-DONE)

Execute script3 after rtl read

Execute script4 after rtl read

Info: thank you for using DashRTL! (err:0, crit:1, warn:1,
info:6)

e Python Shell Initialization Script Example

% dashrtl -py -x 'print("Execute scriptl before rtl read")' \
-x 'print("Execute script2 before rtl read")' \
-run top.v \
-x 'print("Execute script3 after rtl read")' \
-x 'print("Execute script4 after rtl read")' \
-x 'exit()'

Info: loading init script'/home/adam/.dashthru/dashrtl_rc.tcl'.

(SHELL-INIT)

Execute scriptl before rtl read

Execute script2 before rtl read

Info: elaborated design 'top' in Os. (ELAB-DONE)

Execute script3 after rtl read

Execute script4 after rtl read

Info: thank you for using DashRTL! (err:0, crit:1, warn:1,

info:6)

Synthesis-Style Launch Mode

Version 2025.06

In synthesis-style launch mode, the initialization script execution sequence in

DashRTL is as follows:

1. Executethe ~/.dashthru/dashrtl_rc.tclinitialization script file (if present).

2. Execute any single or multiple —execute/-x options (if present).
3. Execute the script files specified by the - f option (if present).

40

DashRTL User Guide Version 2025.06

Note: Unlike in simulation-style launch mode, the order of ~execute/-x options
before or after the - f option does not affect the actual execution order. DashRTL
always executes the —execute/-x scripts first, and then executes the script files
specified by the - f option.

e Tcl Shell Initialization Script Example

% dashrtl -x 'puts "Execute scriptl before rtl read"' \
-x 'puts "Execute script2 before rtl read"' \
-f run.tcl \
-x 'puts "Execute script3 before rtl read"' \
-x 'puts "Execute script4 before rtl read"'

Info: loading init script'/home/adam/.dashthru/dashrtl_rc.tcl'.

(SHELL-INIT)

Execute scriptl before rtl read

Execute script2 before rtl read

Execute script3 before rtl read

Execute script4 before rtl read

Info: elaborated design 'top' in 0s. (ELAB-DONE)

Info: thank you for using DashRTL! (err:0, crit:1, warn:1,

info:6)

e Python Shell Initialization Script Example
% dashrtl -py -x 'print("Execute scriptl before rtl read")' \

x

"print("Execute script2 before rtl read")' \
-f run.tcl \
-x 'print("Execute script3 before rtl read")' \
-x 'print("Execute script4 before rtl read")'

Info: loading init script'/home/adam/.dashthru/dashrtl_rc.tcl'.

(SHELL-INIT)

Execute scriptl before rtl read

Execute script2 before rtl read

Execute script3 before rtl read

Execute script4 before rtl read

Info: elaborated design 'top' in 0s. (ELAB-DONE)

Info: thank you for using DashRTL! (err:0, crit:1, warn:1,

info:6)

41

DashRTL User Guide Version 2025.06

3 Graphical User Interface

DashRTL provides a powerful graphical user interface (GUI) that allows users to easily
review various RTL design information and debug RTL code. DashRTL supports the GUI
in both simulation-style or synthesis-style launch mode, and the functionality of the
GUI remains the same regardless of the launch mode.

In simulation-style launch mode, the GUI will automatically start after RTL code
compilation is complete by default, which is equivalent to explicitly using the -gui
option. If the -no_gui option is used, the GUI will not be started automatically. The two
examples below will both automatically launch the GUI:

% dashrtl -run ...

% dashrtl -gui -run ...

In synthesis-style launch mode, if you want the GUI to start automatically, you need to
explicitly use the —gui option to launch DashRTL, as shown in the following examples:
% dashrtl -gui

% dashrtl -gui -files user.tcl

If you do not want the GUI to automatically start in synthesis-style launch mode (i.e.,
you don't use -gui to launch DashRTL), you can manually start the GUI using the
start_gui command. The following examples show how to start the GUI in both Tcl
mode and Python mode:

dashrtl-tcl> start_gui

dashrtl-py> tcl.proc.start_gui()

This chapter will introduce the various GUI features, including:
e GUIWindow Layout
e Reviewing Classified Messages

e RTL Cross-probing within GUI

e RTL Cross-probing with External Editor

e Reloading RTL Design

42

DashRTL User Guide Version 2025.06

3-1 GUI Window Layout

The following is a schematic of the GUI window layout. The specific content can be
configured through the toolbar under View. It is recommended to check View — Show
Tab Bar to enable the tab bar.

Menu Tool Bar Tab Bar RTL Hierarchy Object List (cell/net...,etc.)

File Edit View Design Report Window Mélp

B0 BAOB &2

1 Hierarchy x B8 Thome/RTLiopen_meu_rtl/soc/sms.v x 8 home/RTLopen. meu.rtlfsoc/open.meu_top.y A
Macros SubModules cell
- x_aou_top 0 3 Name, RefName Type
+ x_gpio_sec_top O 1 X PAD_PWM_CH3. PAD.DIG.I0 B
pmu_top 0 0 X_PAD_PWM_CHA PAD_DIG_IO BBy
sec_top O 2
o 2 X PAD_PWM_CHS. PAD_DIG_IO Eox
o 4 X_PAD_PWM_CHE PAD_DIG_IO BBox
cpu.gated_clk 0 0
+ x_pdu_top o 4 x_PAD_PWM_CHT PAD_DIG_IO BBox
b+ w_main_bus_top 0 1 x_PAD_PWM_CHS PAD_DIG_IO BBox
» wsub_aphO_top O 17 n
_PAD_PWM_CHS PAD_DIG_IO BB
+ xsub_apbl_top 0 14 * o
s lstop O 5 X PAD_PWM_FAULT PAD_DIG_IO BBox
= wrEnLtop 9 1 X_PAD_USKI_NSS PAD_DIG_I0 BBox
» xsmu_top 0 1
*x_PAD_USK_SCLK PAD_DIG_IO BBox
x_PAD_USK_SDO PAD_DIG_IO BBox
x-_PAD_USK_SD1 PAD_DIG_IO BBox
x_PAD_USI1_NSS PAD_DIG_IO BBox
x_PAD_USI1_SCLK PAD_DIG_IO BBox
x_PAD_USI1_SDO PAD_DIG_IO BBox
x_PAD_USI1_SD1 PAD_DIG_IO BBox
X PAD_USIZ_NSS PAD_DIG_I0 BEox
x PAD_USIZ_SCLK PAD_DIG_IO BBox
Errors(0)
- CriticalWarnings{1)
+ Elab.BBox Module(5):

CriticalWarning: unresolved design Standard. Cell_CLK _GATE s treated as black bax (comman.y, 69)
CriticalWarning: unresolved design "Standard_Cell_CLK_MUXZ s treated as black box (common.v, 35}
CriticalWarning: unresolved design ‘fpga_spram'is treated as bladhkgx (sms.v, 602)

CrticalWarning: unresolved design PAD_OSC_I0) s treated as black Dag_(open-meu_top.v, 1120}
CriticalWarning: unresolved design ‘PAD_DIG_IO' is treated as black box n_mcu_top.v, 1132}

Log History | Message

dashrtl-tcl>

Ready elaborated

N /

Operation Command Log/History/Message Operation Phase
Status Input Window

43

DashRTL User Guide Version 2025.06

3-2 Reviewing Classified Messages

After executing the analyze and elaborate commands, the message window in the
GUI will classify and display the RTL compilation messages. DashRTL divides messages
into four severities: Error, CriticalWarning, Warning, and Info. For the specific
meanings of these message levels, please refer to Section 4-2: RTL Syntax Checking.

The following is an example of the message window. It can be seen that under each
message severity, the messages are further classified with their message IDs. DashRTL
message IDs follow a functional naming style, such as Elab.Convert.Unsign, which
indicates a message related to the conversion of unsigned numbers during the
elaboration process. Under each message ID, all messages of this type can be expanded.

This format makes it clear for users to understand the actual issue related to any type
of messages through the message ID, improving the readability of the messages.

File Edit View Design Report Window Help
B0 BAOR &2

1 Hierarchy x A fhome/RTLiopen_mcu_rtl/soc/sms.v x 8 /home/RTL/open.mcu_rtl/soc/open._meu_top.y A

SubMadules * | cell

- 3 Name RefName Type
" x z 1 « PAD_PWM_CH3 PAD_DIG_IO BBox
op 0 ;3 X PAD_PWM_CHA PAD_DIG_IO BBox
» %_ricO_sec_to
- wepu_top o 2 *PAD_PWM_CHS. PAD_DIG_IO BBox
Py o a x_PAD_PWM_CHE PAD_DIG_IO BBox
cpu_gated_clk 0 0
- x_ptotop o 4 * PAD_PWM_CHT PAD_DIG_IO BBox
+ % main hus tan 0 n " v PAD WM CHA PaD DI 1N ARy
Errors(0)
* CriticalWarnings{1)
~ Elab.BBos
i olved design ‘Standard_Cell_CLK_GATE is treated as black box (commen.y, 69)

olved design ‘Standard_Cell _CLK_MUKXZ Is treated as black box {common.y, 35}

. 2)
ved design PAD_GSC_ICY s treated as black box (spen_mcu_top.y, 1120)
olved design PAD_DIG_IC is treated 35 black box {open_mcu_top.v. 1132)

- Warnings(4)
» Elab.Convert Unsign[151).
- Elabgnore ParaOverrida(1)
Viarming: failed to pass parameter *32'sh20, 32'5hE, 32h4000" to macra cell Tpga_spram’ which is BBox (sms.v, 602)
* Elab Implicit Net(2)
Véarning: declaring implicit wire pslver’ (apb0.v, 140)
Véarming: declaring implictt wire pelven (apbL., 140)
+ Expect Lib{1):
~ Infos{10)
» Ana.Done(1):
» Ananclude(10):
+ Elab Done(1)
» Elab.infer(1)
+ Elab MultiPass(2).
» ElabPara(z)
+ Elab.Unsupported Pragma(19):
+ Lic Ca(2)
» LicEval(l):

Log History | Message
dashrtl-tel

Ready elaborated

44

DashRTL User Guide Version 2025.06

3-3 RTL Cross-probing within GUI

DashRTL GUI supports two ways to perform a one-click cross-probing to RTL code: one
is from the hierarchy window and the other is from the message window.

To cross-probe from the hierarchy, simply right-click on the specified hierarchy level
and select Crossprobe. This will open an external editor to review the code
corresponding to the selected instance, as shown in the figure below.

File Edit View Design Report Window Help

RO BAOE &0

Macros SubModules Met
Name Bus Array

cpu_pmu_dfs_ack

leep_b

cpu_p
dft_clk

ehs._pmu_clk
els_pmu_clk
pad_core_clk
pad_core_ctim_refelk

pad-core_rstb

pad_meurst_b -
padds [31:0]
penable -
pru_aph0_pelk_en

pru_aph_s elk

pii-apb._s3rst b

pri-apb1_pelken

priu-aph s 3clk

priu_aphl_s3rst_b

revss e Afe can

Ervars(0)
- CriticalWarnings(1)
- Elab.BBax, Module(5)
CriticalWarning: unvesolved design Standard_Cell_CLK.GATE is treated as black box (common.y, 69)
CriticalWarning: unresolved design Standard_Cell_CLKMUXZ s treated as black box (common.y, 35)

CriticalWarning: uncesol lved design Tpga_spram s treated as black box (sms.v, 502)

CriticalWarning: unresol Ived design PAD_OSC_IO) is treated as black box {open_meu_top.y, 1120)

CriticalWarning: unresolved design PAD_DIG_ICY is treated as black box. {open_mcu_top.v, 1132)
- Waminas(a)

Log History = Message
dashrtl-tel>

Ready elaborated

To cross-probe from the message, right-click on the selected message and select
Crossprobe. This will automatically open a new tab displaying the corresponding line
for the selected message.

Flle Edit View Design Report Window Help

BB BA0® &

L] Hierarchy x B fhome/RTL/open.meu-rtlfsoc/common.y x
31 vace clk_sel;

22 wire clk_a;

23 vire clk_b;

24 “ifdef FPGA

35 reg clk_out;

26 always @(clk_sel or clk_a or clk_b)

27 begin

28 case(cli_sel) #f synopsys infer _mux
29 1bl:ck-out = clk-b;
30 1b0:clk_out = clk_a;

31 endease

32 end

33 “else

34 vire clk_out;

35 Standard_Cell_CLK_MUX2 x_STD_clkmuzc2 |
£ 00 (clh_a),
37 D1 [clk_b),
kL] 5 felk_sel),
39 X (clk-out)
40)%

41 "endif

42 endmodule

43 module gated_cik_cellf
44 cle_in,

45 global_en,

48 module_en,

47 local.en,

Errors(0)
- CriticalWarnings(1)
- Elab.BBox Module(S):

box_{common.v, 65
e f-ommon.y, 35)

ooe W GYM D, 11 90)
les pv.1132)

Fr

CriticalWarning: unreselved design PAD_DIG_IOY is treated a
 Warminns(4)

Log History Message
dashrtl-tcl>

Ready elaborated

45

DashRTL User Guide Version 2025.06

3-4 RTL Cross-probing with External Editor

DashRTL GUI also supports one-click cross-probing from a message to an external
editor, allowing users to quickly modify problematic code and accelerate the debug
process.

To cross-probe from the message in an external editor, right-click on the selected
message and select Crossprobe with XxXX. This will automatically open the
corresponding RTL filein an external editor specified in tool variable crossprobe_exec.

File Edt View Design Report Window Help
B0 BAOCE &2

] Hierarchy

X
21 vire clk_sel; o
22 wire clk_a;
23 vire clh_b;
24 ifdef FPGA
25 req clk-out;
26 always @1 clk_sel or clk_a or clk_b)
27 begin

g
38 case(clisel) /f synopsys infer_mus
29 1blclk out = clk_b;
30 100 clk.out = cli.a;

31 endcase

32 end

33 “else

34 vire clk_out:

35 Standard _Cell_CLK_MUX2 x_STO_clkmusZ
3 0o fclk_a),
a7 D1 felk_b),
38 s (clk_sel),
3 X {clk_out)
a0

A1 “endif

42 endmodule
43 module gated _cik_cel{
Al cliin,

45 global_en,

48 module_en,

47 localen,

Errors(0)
- CriticalWarnings(1)

unresalved design "Standard_Cell_CLK_GATE is treated as black box {common.v, 68)
d

Log History | Message
dashrtl-tcl>

Ready elaborated

If the user only wants to review the code corresponding to the last error message, they
can use the shortcut button in the toolbar, as shown in the below figure.

File Edit View Design Report Window Help

B0@=ace 8=

-] Hierarchy —lo)x)
Macros SubModul -

Click to review the code

in an external editor
corresponding to the
last error message

- Errors(1)
- Ana.Expect Ending(L):

CriticalWarnings{0)
Wiamings(0}
» Infos(4)

Log History | Message

dashrtl-tcl>

Ready analyzed

46

DashRTL User Guide Version 2025.06

3-5 Reloading RTL Design

After the user modifies the problematic code, they can click the toolbar shortcut button
to reload the design. DashRTL will execute the same analyze and elaborate
commands to recompile the RTL.

File Edit View Design Report Window Help

B0a maos[g]e

T Hierarchy X
Macros| SubMadules Cell

0 3 Name RefName Type
0 . . x_PAD_EHS PAD_OSC_IO BBox
o Cliek to reload the design
o : % PAD_GPIO 0 PAD_DIG.IO BBox
xPAD_GPIO_1 PAD_DIG_10 BBox
xPAD_GPIO_10 PAD_DIG_10 BBox
*xPAD_GPIO 11 PAD_DIG.IO BBox
xPAD_GPIO 12 PAD_DIG.IO BBox
xJPAD_GPIO 13 PAD_DIG.IO BBox
xPAD_GPIO_14 PAD_DIG_IO BBox
xPAD_GPIO_15 PAD_DIG_IO BBox
xPAD_GPIO_16 PAD_DIG_IO BBox
xPAD_GPIO_17 PAD_DIG_IO BBox
xPAD_GPIO_18 PAD_DIG_IO BBox
xPAD_GPIO_19 PAD_DIG_IO BBox
xPAD_GPIO_2 PAD_DIG_IO BBox
xPAD_GPIO_20 PAD_DIG_IO BBox
xPAD_GPIO_21 PAD_DIG_IO BBox
xPAD_GPIO_22 PAD_DIG_IO BBox
» Errors(1)
+ CriticalWarnings(1)
+ Warnings(4)
» Infos(11)

Log History | Message
dashrtl-tel

Ready elaborated

47

DashRTL User Guide Version 2025.06

4 DashRTL Features

The DashRTL function does not merely involve a simple check of RTL syntax. Instead, it
breaks down the inspection of RTL design into multiple aspects.

First, before compilation, the read_f1list command checks thefile list. If the flist file
is valid, the RTL compilation proceeds. The compilation process itself is divided into
two aspects: syntax checking and synthesizability checking. After compilation is
complete, users can explore the RTL design using Tcl commands, such as querying the
hierarchies, parameters, cells, nets, and more.

This chapter will introduce the various features for checking RTL designs, including:

e RTL File List Checking

e RTL Syntax Checking

e RTL Synthesizability Checking
e RTL Design Exploration

48

DashRTL User Guide Version 2025.06

4-1 RTL File List Checking

Before compiling RTL, DashRTL first checks the validity of the RTL file list beforehand to
prevent users from discovering issues with the file list during the lengthy compilation
process, which can save a significant amount of iteration time.

File path errors are common issues in the RTL file list. For example, in the file list below,

the rtl.list file contains non-existent file and directory paths.

+incdir+/design/no_exist
/design/rtl/no_exist.v

In the following example, before executing the analyze command, the read_flist
command first checks the legality of the file list. As shown, it reports the two non-
existent file paths and errors out.

dashrtl-tcl> analyze -hdl_type verilog [read_flist rtl.list]
Warning: directory '/design/no_exist' not found. (PATH-NOTFOUND)
Error: file '/design/rtl/no_exist.v' not found. (PATH-NOTFOUND)
Line: 2

File: /home/dashthru/rtl.list

49

DashRTL User Guide Version 2025.06

4-2 RTL Syntax Checking

DashRTL checks the syntax of RTL code during compilation to ensure it complies with
Verilog/SystemVerilog HDL syntax. The syntax checks are divided into four severity
levels:

e Error

The highest severity of compilation syntax error, making compilation to abort. The user
must correct this immediately.

e CriticalWarning

Complies with HDL syntax but is likely an RTL design error.

e Warning

Complies with HDL syntax but may indicate a potential issue in the RTL design.

e Info

General reports during the compilation process, which the user may review as needed.

DashRTL's RTL compilation consists of two stages: analyze and elaborate, each
responsible for different types of syntax checks. The two stages are equally important
for RTL syntax checking, in which users should review both messages.

Messages from the RTL compilation can be reviewed through log files or the GUI. While
reviewing the messages in a log file allows for easy searching with an editor, it is
recommended to use the GUI to review the messages. The GUI classifies messages by
their severity levels, providing a clearer overview of RTL syntax issues.

For more information on how to use the GUI to view messages and perform RTL cross-
probing, please refer to Section 3: Graphical User Interface.

4-3 RTL Synthesizability Checking

RTL synthesizability checking is also a crucial part of RTL checking. Not all Verilog HDL
syntax is synthesizable; many keywords are only supported for simulation purposes,
such as real, specify, primitive, and others.

In projects, simulation model files are often mistakenly included in the RTL file list.

DashRTL helps identify these errors early, preventing the issue from being discovered
later during the synthesis phase.

50

DashRTL User Guide Version 2025.06

4-4 RTL Design Exploration

e Query Design Objects with the get_objects Command

After the RTL compilation is complete, users can explore the RTL design based on their
needs, such as querying cells, nets, pins, and other design objects. DashRTL uses the
get_objects command to query RTL design objects including: cell, net, pin, port,
module, parameter, task, function, lib, lib_cell, lib_pin.

Using get_objects, you can retrieve different types of objects as follows:

dashrtl-tcl> get_objects -type cell #*regx

out_regl[0] out_reg[l] out_regl[2]

_objo

dashrtl-tcl> get_objects -type port clk

clk
_obj1

To meet user preferences, DashRTL also provides equivalent commands for different

object types, as shown in the table below:

Original Command

Equivalent Command

get_objects -type cell get_cells
get_objects -type net get_nets
get_objects -type pin get_pins
get_objects -type port get_ports

get_objects -type module

get_modules

get_objects -type parameter

get_parameters

get_objects -type task

get_tasks

get_objects -type function

get_functions

get_objects -type lib get_libs

get_objects -type lib_cell get_lib_cells
get_objects -type lib_pin get_lib_pins
get_objects -type lef_tech get_lef_tech
get_objects -type lef_site get_lef_sites
get_objects -type lef_cell get_lef_cells
get_objects -type lef_pin get_lef_pins

get_objects -type floorplan

get_floorplan

51

DashRTL User Guide Version 2025.06

The usage of equivalent commands is as follows:
dashrtl-tcl> get_cells #*regx

out_reg[0] out_reg[l] out_reg[2]

_objo

dashrtl-tcl> get_ports clk

clk

_obj1

e Query Design Properties with the get_property Command
In addition to design objects, users can query the properties of objects to access more
related design information, such as full_name and ref_name.

The list_property command can be used to query the property list of a specified
object type. The usage is as follows:
dashrtl-tcl> list_property -type cell

full_name (string)
is_multibit (bool)

ref_name (string)
type (string)

Then, the get_property command can be used to query the properties of a specified
object. The usage is as follows:

dashrtl-tcl> get_property [get_cells x_PAD_GPIO_0] ref_name
PAD_DIG_IO

52

DashRTL User Guide Version 2025.06

Appendix A DashRTL Launch Options

% dashrtl [-files | -f | -init] <startup_exec_tcl_or_python_script_files>
Execute Tcl or Python script files. Multiple files can be specified in quotes.
The option can be used multiple times.

[-execute | -x] <startup_exec_tcl_or_python_scripts>
Execute Tcl or Python scripts. The option can be used multiple times.

[-pymode]
Launch in Python mode. If not used, DashRTL will launch in Tcl mode.

[-gui | -no_gui]
Choose whether to launch the GUI. If -no_gui is used, the start_gui
command will be disabled.

[-lic_timeout <integer>]
Specify the time (in seconds) to wait for license checkout. If this time is
exceeded, DashRTL will exit.

[-log <log_file_name <cmd_file_name>> | -no_log]

Use -1log to specify log and cmd file names. If not used, the default names
aredashrtl.loganddashrtl.cmd. Use -no_log to prevent the creation
of these files.

[-no_overwrite]

By default, DashRTL overwrites the previous log files. If this option is used,
DashRTL will generate log and cmd file names with sequential numbers
(e.g., dashrtl.log2,dashrtl. log3, etc.).

[-version]
Displays the DashRTL tool version.

53

DashRTL User Guide Version 2025.06

[-help | -h | --help]
Displays the DashRTL help information.

[-run <design_read_options>]

All options after this are considered <design_read_options>, not
DashRTL's launch options. Therefore, it must be the last option used to
launch DashRTL.

-run [filelist | -f] <hdl_filelists>
Specifies the filelist files.

-run [-verilog|-v01|-v2001|-v2k|-v05|-v2005|-sverilog|-sv09|
-5v2009|-sv12|-sv2012|-sv17|-sv2017|-sv23|-sv2023|
-netlist|-autoext]

Specifies the HDL standard for compilation.

-run [-v <ignore_files>]
Specifies simulation model files which is ignored during compilation.

-run [+incdir+<path>]
Specifies the search path for include files.

-run [+define+<macro_id>(=<value>) |
Defines macros before compilation.

-run [+hdlext+<ext>=<hdIstd>]
Specifies customized automatic extension matching for HDL
standards.

-run [-top <design_name> |
Specifies the top module name for elaboration.

-run [-liblist <timing_library_filelists>]
Specifies the library list files.

-run [-search_path <paths> |
Specifies the search paths.

-run <hdl_files>
Specifies the HDL files for compilation.

54

DashRTL User Guide Version 2025.06

Appendix B DashRTL Tool Variables

Tool Variable Name Default Value

crossprobe_exec gvim +{line} {filepath}

Set the custom third-party editor options for cross-probing.

elab_allow_bbox true

Set whether to allow RTL unresolved instances. If true, black boxes will not trigger an
error.

get_objects_fast_match true

Set whether to use a fast match algorithm for the get_objects command.

get_objects_of_sequence | object_pointer cell net pin port module

Set the priority sequence for matching object typesin the get_objects -of_object
option. Matching will be done in this specified order.

hdl_allow_static_task true

Allow local latch behavior of variables inside static tasks for Verilog HDL and
SystemVerilog HDL.
Setting to 'false' will disable static task processing and take all tasks as automatic.

hdl_default_ext verilog=.v sverilog=.sv netlist=.vg

Set the default file extensions for different HDL standards in autoext setting.

hdl_default_std verilog=v05 sverilog=sv09

Set the default standards for Verilog and SystemVerilog in the compiler.

hdl_inst_array_pre_postfix | prefix=[postfix=]

Set the prefix and postfix for block name arrays.

55

DashRTL User Guide Version 2025.06

hdl_max_limit loop=65536 recursion=512

Loop : Setthe maximum iterations for for, while, and repeat loops.
Recursion :Setthe maximum number of recursive calls for function and task.

hdl_soc_integration_mode | false

Control whether to issue system connection related warnings as critical warnings in
SoC integration mode.

hier_separator inst=/ inst_alt=| genblk=. blk=.

Set the hierarchy separator.

host_max_threads 0

Set the maximum number of CPU threads. If set to 0, the number of threads will be
based on the number of CPUs in the current machine.

link_hdl_lib_priority error

Control which to reference when a cell exists both in HDL description and timing
library.

error : Not allowed

1ib : Use timing library

hd1: Use HDL description

search_path

Set the search path for source files.

tcl_shell_print_limit 1000

Set the character limit for printing in the Tcl shell.

56

DashRTL User Guide

Appendix C

Version 2025.06

DashRTL Tool Commands

The following command list includes DashRTL tool commands, available in both Tcl

and Python modes.

This list contains only the DashRTL tool-specific commands and does not include native

Tcl commands (e.g., set, string, lappend, etc.) or Tcl extension commands (e.g.,

define_proc_constraints, add_to_objects, etc.).

For information on native Tcl commands and Tcl extension commands, please refer to
the FusionShell User Guide (FusionShell_UserGuide_EN.pdf).

Tcl Command

Python Command

Function

alias

tcl.proc.alias()

Create an alias name

analyze tcl.proc.analyze() Read RTL files

apropos tcl.proc.apropos() Search for command names
related to a specified string

crossprobe tcl.proc.crossprobe() Use external editor for RTL

cross-probing

current_design

tcl.proc.current_design()

Set the working design

elaborate tcl.proc.elaborate() Perform design elaboration
error_info tcl.proc.error_info() Print error information
get_cells tcl.proc.get_cells() Return cell objects

get_functions

tcl.proc.get_functions()

Return function objects

get_lib_cells tcl.proc.get_lib_cells() Return lib_cell objects
get_lib_pins tcl.proc.get_lib_pins() Return lib_pin objects
get_libs tcl.proc.get_libs() Return lib objects

get_modules

tcl.proc.get_modules()

Return module objects

get_nets

tcl.proc.get_nets()

Return net objects

get_object_name

tcl.proc.get_object_name()

Return object names

get_objects

tcl.proc.get_objects()

Return objects of the specified
type

57

DashRTL User Guide

Version 2025.06

get_parameters

tcl.proc.get_parameters()

Return parameter objects

get_pins

tcl.proc.get_pins()

Return pin objects

get_ports

tcl.proc.get_ports()

Return port objects

get_property

tcl.proc.get_property()

Return object properties

get_tasks

tcl.proc.get_tasks()

Return task objects

get_tool_var

tcl.proc.get_tool_var()

Return the value of a tool
variable

list_property

tcl.proc.list_property()

Return the property name list of
a specific object type

list_tool_var tcl.proc.list_tool_var() Return the list of all tool variable
names

man tcl.proc.man() Enter manual page

pymode tclmode() Switch between Tcl/Python
modes

read_flist tcl.proc.read_flist() Read and parse the flist file

read_libs tcl.proc.read_libss() Read LIB files

read_lefs tcl.proc.read_lefs() Read LEF files

read_def tcl.proc.read_def() Read DEF files

reload_design

tcl.proc.reload_design()

Reload the RTL design

reset_design

tcl.proc.reset_design()

Clear all compiled RTL design

reset_tool_var

tcl.proc.reset_tool_var()

Reset a tool variable to its
default value

set_tool_var tcl.proc.set_tool_var() Set a tool variable
start_gui tcl.proc.start_gui() Open GUI
stop_gui tcl.proc.stop_gui() Close GUI

58

	Copyright Notice
	Contents
	1 DashRTL Introduction
	1-1 DashRTL Feature Overview
	1-2 DashRTL Installation and Deployment

	2 DashRTL Launch Modes
	2-1 Simulation-Style Launch Mode
	Preparing Input Files
	Simulation-Style Launch Options
	Simulation-Style Launch Example
	Simulation-Style Launch Reference Examples

	2-2 Synthesis-Style Launch Mode
	Preparing Input Files
	Synthesis-Style Launch Options
	Interactive and Batch Shell Mode
	Dynamically Switching Between Tcl Shell and Python Shell
	Setting Tool Variables
	Reading Cell Libraries
	Reading RTL Files
	Synthesis-Style Launch Reference Examples

	2-3 Handling File Lists
	Using flist to Specify search_path
	Using flist to Specify get_cells
	Using flist to Specify HDL File List
	Using flist to Specify LIB File List

	2-4 Launch with Initialization Scripts
	Simulation-Style Launch Mode
	Synthesis-Style Launch Mode

	3 Graphical User Interface
	3-1 GUI Window Layout
	3-2 Reviewing Classified Messages
	3-3 RTL Cross-probing within GUI
	3-4 RTL Cross-probing with External Editor
	3-5 Reloading RTL Design

	4 DashRTL Features
	4-1 RTL File List Checking
	4-2 RTL Syntax Checking
	4-3 RTL Synthesizability Checking
	4-4 RTL Design Exploration

	Appendix A DashRTL Launch Options
	Appendix B DashRTL Tool Variables
	Appendix C DashRTL Tool Commands

