DashRTL a

ACCELERATE RTL DESIGN CYCLES: [-
10X 10 1000X SPEEDUP WITH
ULTRA-FAST MULTICORE COMPILER TECHNOLOGY

WHY DASHRTL?

DashRTL is a high-performance RTL design platform engineered for large-scale chip designs. As projects grow
in complexity, RTL development often requires frequent compilations to identify and resolve issues during
iterative design cycles. Traditional approaches, such as using linting, synthesis, or simulation tools, can be
highly time-consuming and inefficient.

DashRTL overcomes these challenges with its ultra-fast multicore compiler, which enables parallel RTL
processing for rapid design iterations. For large-scale SoC projects, DashRTL's robust capacity and scalability
supports full-chip RTL compilation and comprehensive checks, eliminating the need for time-intensive
hierarchical RTL checking.

Whether you are verifying syntax, checking synthesizability, or exploring design hierarchies, DashRTL ensures
thatyour RTL code is error-free and ready for design integration, reducing iteration cycles from hours to seconds.

RTL Design Flow Using DashRTL

supportTdand |
H /s

|
: Python Command- 1__
|

Line Mode ! [|
S 27 1 One-Click Reload |
Read RTL .~ | __ RTLDesign !
:_ '''''' 10x~1000x : p Analyze + Elaborate
i Acceleration With i S 1 oo
|

RTL Cross-Probing :
!L with Any Editor |

Full-chip Capacity ——

Review Reports

Syntax Error?
i I - Potential Issue?
[Message : s
| Classification in GUI |_ _~

Modify RTL
in External Editor

Optional: Explore
RTL design

contact@dashthru.com DashRTL User Guide
https://www.dashthru.com DashRTL Video
Start Free Trial Now

mailto:contact@dashthru.com
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/

PERFORMANCE

DashRTL leverages innovative multicore compiler technology to achieve 10x-1000x improvements over

traditional RTL checking tools.

This runtime data compares DashRTL with mainstream linting, synthesis, and simulation tools, all based on a

direct comparison of the total time spent on the analyze and elaborate steps.

Linting Tool

Synthesis Tool

Simulation Tool

RTL Reading
. DashRTL

Runtime
Design A

2 0.6s
Cell Count ~0.1M
Design B

2 1.2s
Cell Count ~0.4M
Design C

2 3.0s

Cell Count ~2.5M

KEY BENEFITS

69s

169s

237s

Linting Tool

23s

54s

122s

Synthesis Tool

7s

12s

61s

Simulation Tool

DashRTL
Checking

Ultra-Fast
Performance
Checking

. Block / Full Chip

Scalability
Checking

Moderate
Strategy
Synthesizability

Yes
Check
Message Classification

Yes

in GUI

Command-Line
Tcl/ Python / Mix

Mode
RTL Read .
) Multi Core
Processing
RTL Cross-Probing
Yes

with External Editor

contact@dashthru.com

https://www.dashthru.com

Very Slow

Block / Hierarchical

Over Check

Partial

Yes

Tcl

Single Core

No

DashRTL User Guide
DashRTL Video

Start Free Trial Now

Slow

Block / Hierarchical

Under Check

Yes

No

Tcl / Python

Single Core

No

Fast

Block / Hierarchical

Under Check

No

No

Tcl

Single Core

No

mailto:contact@dashthru.com
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/

KEY FEATURES

Dynamic Workflow

Offers dual launch modes
(Simulation-Style and Synthesis-
Style) and supports Tcl/Python
scripting for customizable

workflows.

Smart GUI

Features cross-probe debugging,
message classification, and one-
click navigation to code linesin
third-party editors for instant

issue resolution.

Design Exploration

Enables hierarchical exploration
of RTL designs, including design
object and property analysis, for
deeper insights into design

structures.

contact@dashthru.com

https://www.dashthru.com

DashRTL User Guide
DashRTL Video

Info: elaborated design 'mcu_open_top' in 243ms. (ELAB-DONE)
dashrtl-tcl> set design [get_object_name [current_design]]
current design is 'mcu_open_top'
mcu_open_top

dashrtl-tcl> pymode =-=-=-=--="- !
1

dashrtl-py> design
'mcu_open_top'

dashrtl-py> design = design.upper()
dashrtl-py>tclmode() -+ =-=-=-=-=-=-=-=-~
dashrtl-tcl> puts $Sdesign

MCU_OPEN_TOP

dashrtl-tcl>

Dynamic Switching Between

Tcl Shell and Python Shell

[T a——

File Edit Wiew Design Report Window Help

B0 FABOCS &=

| = Hierarchy

SubModules Cell

- open_mecu_top

0 4
a0 top o N Name RefName Type
- X cpu_top o 2 X_ahb_matrix_7_12_main ahb_matrix_7_12_main Module
» CPU 0 4 x-dmac_top dmac._top Moduls
cpu.gated_clk 0 o)
+ x_pdu_top 0 4 x_main_dmemdummy_t.. ahb_dummy_top Module
x-main_bus.-to| 0 11 x_main_dummy_topQ ahb_dummy_top Module
+ x_sub_apb0_top 0 17 P b ",
+ x_subapbl_top 0 14 X-main.dummy._topl ahb.dummy_top Module
+ x_sub_ls_top 0 5 x_main_dummy_top2 ahb_dummy_top Madule
* x-retu-top 0 1 x-maln_dummy_top3 ahb_dummy_top Module
Erors(0)
» CriticalWarnings(1)
~ Warnings(4)

» Elab.Convert.Unsign(151):
» Elab.Ignare ParaOverride(1):
= Elab.mplicitNet(2):
Warning: declaring implicit wire ‘pslverr’ (apb0.v, 140}
Warning: declaring implicit wire ‘pslverr’ (apbLy, 140}
» Expect.Lib(l):
~ Infos(9)

Log | History | Message |

|dashrti-tct|

Ready
‘ & Hierarchy X ’
Macros SubModules
open_mcu_top 0 4
» x_aou_top 0 3
¥ X-cpu-top 0 2
» CPU n P
cpu_gated. T Hierarchy X ‘ Bl Module Properties X
~ x-pdu_top
» x-main_bus
» x_sub_apb(Property Name Value
» x-sub_apbl crossprobe_filepath /home/adam/open_mcu_top.v
» x_sub_ls_tc

1570

> X_retu_top crossprobe_line

full_name open_mcu-top
is_elaborated true
type module

Start Free Trial Now

mailto:contact@dashthru.com
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/
https://www.dashthru.com/

